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Nonlinear Elasticity,
Plasticity, and Viscoelasticity

The soft-minded man always fears change. He feels security in the status quo, and he has an
almost morbid fear of the new. For him, the greatest pain is the pain of a new idea.

——– Dr. Martin Luther King, Jr.

12.1 Introduction

Recall that nonlinearities arise from two independent sources. (1) Nonlinear-
ity due to changes in the geometry or position of the material particles of a
continuum, which is called the geometric nonlinearity. (2) Nonlinearity due to
the nonlinear material behavior, which is called material nonlinearity. In solid
mechanics, the geometric nonlinearity arises from large strains and/or large
rotations, and these enter the formulation through the strain–displacement re-
lations as well as the equations of motion. In fluid mechanics and coupled fluid
flow and heat transfer, the geometric nonlinearity arises as a result of the spa-
tial (or Eulerian) description of motion and they enter the equations of motion
through material time derivative term. Material nonlinearity in all disciplines of
engineering arise from nonlinear relationship between the kinetic and kinematic
variables, for example, stress–strain relations, heat flux–temperature gradient
relations, and so on. In general, material nonlinearities arise due to the material
parameters (e.g. moduli, viscosity, conductivity, etc.) being functions of strains
(or their rates), temperature, and other basic variables.

The finite element formulations presented in the previous chapters were
largely based on geometric nonlinearity. However, the nonlinearity in the one-
and two-dimensional field problems discussed in Chapters 4 and 6 could have
come from either sources. In this chapter, material nonlinear formulations are
given attention. This field is very broad and special books are devoted to various
types of nonlinearities (e.g. plasticity, viscoelasticity, and non-Newtonian ma-
terials). The objective of this chapter is to briefly discuss nonlinear elastic and
elastic–plastic material models for solids, finite element models of viscoelastic
beams with the von Kármán nonlinearity, and the power-law model for viscous
incompressible fluids.

J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Second Edition. c©J.N.
Reddy 2015. Published in 2015 by Oxford University Press.
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12.2 Nonlinear Elastic Problems

Materials for which the constitutive behavior is only a function of the current
state of deformation are known as elastic. In the special case in which the work
done by the stresses during a deformation is dependent only on the initial state
and the current configuration, the material is called hyperelastic, that is, there
exists a strain energy density potential U0(Eij) such that

Sij =
∂U0

∂Eij
(12.2.1)

where Sij ard Eij are the components of the second Piola–Kirchhoff stress
tensor and Green–Lagrange strain tensor, respectively. When U0 is a nonlinear
function of the strains, the body is said to be nonlinearly elastic. A nonlinearly
elastic material has the following features: (a) U0 is a nonlinear function of
strains, (b) all of the deformation is recoverable on removal of loads causing the
deformation, and (c) there is no loss of energy (i.e. loading and unloading is
along the same stress–strain path; see Fig. 12.2.1).

Here we consider a one-dimensional problem to discuss the finite element
formulation of a nonlinear elastic material for the case of kinematically in-
finitesimal strains, for which we have σxx = Sxx and εxx = Exx. Consider the
nonlinear uniaxial stress–strain relation

σxx = E F(εxx) (12.2.2)

where εxx is the infinitesimal strain, E is a material constant, and F is a
nonlinear function of the strain.

The virtual work expression for the axial deformation of a bar made of a
nonlinear elastic material is

0 =

∫
A

∫ xb

xa

σxxδεxx dxdA−
∫ xb

xa

fδu dx− P e1 δu(xa)− P e2 δu(xb)

=

∫ xb

xa

[EA F(εxx)δεxx − fδu] dx− P e1 δu(xa)− P e2 δu(xb) (12.2.3)

where P ei are the nodal forces. The residual vector for the finite element model
is

Rei =

∫ xb

xa

[
EA F(εxx)

dψei
dx
− fψei

]
dx− P ei (12.2.4)

where ψei are the Lagrange interpolation functions. The tangent stiffness matrix
coefficients are computed using the relation

T eij =
∂Rei
∂uej

= EA

∫ xb

xa

∂F
∂εxx

∂εxx
∂uej

dψei
dx

dx = EA

∫ xb

xa

(
∂F
∂εxx

)
dψei
dx

dψej
dx

dx

(12.2.5)
where small strain assumption is used in arriving at the last step.
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Fig. 12.2.1: A nonlinear elastic stress–strain curve.

An example of the nonlinear elastic response is provided by the Romberg–
Osgood model

F(εxx) = (εxx)n ,
∂F
∂εxx

= n (εxx)n−1 (12.2.6)

where n > 0 is a material parameter. The value of n = 1 yields the linear elastic
case. This discussion can be extended to beams, plates, and multi-dimensional
cases, where F = F(εij).

12.3 Small Deformation Theory of Plasticity

12.3.1 Introduction

Plasticity refers to non-recoverable deformation and non-unique stress paths in
contrast to nonlinear elasticity, where the entire load–deflection path is unique
and the strains are recovered on load removal. The mathematical theory of
plasticity is of a phenomenological nature on the macroscopic scale and the
objective of the theory is to provide a theoretical description of the relationship
between stress and strain for a material that exhibits an elastic–plastic response
(see [285–290]; in particular, see pp. 26–29 for one-dimensional bar problems,
pp. 129–148 for one-dimensional Timoshenko beams, and pp. 215–281 for
two-dimensional problems in [289]). The plastic behavior is characterized by
irreversibility of stress paths and the development of permanent (i.e. non-
recoverable) deformation (or strain), known as yielding (or plastic flow).

If uniaxial behavior of a material is considered, a nonlinear stress–strain
relationship on loading alone does not determine if nonlinear elastic or plastic
behavior is exhibited. Unloading part of the curve determines if it is elastic or
plastic [see Figs. 12.3.1(a) and (b)]; the elastic material follows the same path
in loading and unloading, while the plastic material shows a history-dependent
path unloading.
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Fig. 12.3.1: Stress–strain behavior of (a) ideal plasticity and (b) strain-hardening
plasticity.

The theory of plasticity deals with an analytical description of the stress–
strain relations of a deformed body after a part or all of the body has yielded.
The stress–strain relations must contain:

1. The elastic stress–strain relations.

2. The stress condition (or yield criterion) which indicates onset of yielding.

3. The stress–strain or stress–strain increment relations after the onset of
plastic flow.

12.3.2 Ideal Plasticity

Many materials exhibit an ideal plastic (or elastic-perfectly-plastic) behavior,
as shown in Fig. 12.3.1(a). In this case, there exists a limiting stress, called
yield stress, denoted by σY , at which the strains are indeterminate. For all
stresses below the yield stress, a linear (or nonlinear) stress–strain relation is
assumed:

σij < σY linear elastic behavior

σij ≥ σY plastic deformation (not recoverable)
(12.3.1)
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12.3.3 Strain-Hardening Plasticity

A hardening plastic material model provides a refinement of the ideal plastic
material model. In this model, it is assumed that the yield stress depends on
some parameter κ (e.g. plastic strain εp), called the hardening parameter. The
general yield criterion is expressed in the form

F (σij , κ) = 0 (12.3.2)

This yield criterion can be viewed as a surface in the stress space, with the
position of the surface dependent on the instantaneous value of the hardening
parameter κ. Since any yield criterion should be independent of the orientation
of the coordinate system used, F should be a function of the stress invariants
only. Experimental observations indicate that plastic deformation in metals is
independent of hydrostatic pressure. Therefore, F must be a function of the
stress invariants of the deviatoric stress tensor σ′:

F (J ′2, J
′
3, κ) = 0, J ′2 =

1

2
σ′ijσ

′
ij , J ′3 =

1

3
σ′ijσ

′
jkσ
′
ki (12.3.3)

Two of the most commonly used yield criteria are given next.

The Tresca yield criterion

F = 2σ̄ cos θ − Y (κ) = 0, σ̄ =
√
J ′2 (12.3.4)

The Huber–von Mises yield criterion

F =
√

3J ′2 − Y (κ) = 0 (12.3.5)

where Y is the yield stress from uniaxial tests, θ is the angle between the line
of pure shear and the principal stress σ1, and σ̄ =

√
J ′2 is called the effective

stress.
After initial yielding, the stress level at which further plastic deformation

occurs may be dependent on the current degree of plastic straining, known as
strain hardening. Thus, the yield surface will vary (i.e. expand) at each stage
of plastic deformation. When the yield surface is independent of the degree
of plasticity, the material is said to be ideally (or perfectly) plastic. If the
subsequent yield surfaces are a uniform expansion of the original yield surface,
the hardening model is said to be isotropic. On the other hand, if the subsequent
yield surfaces preserve their shape and orientation but translate in the stress
space, kinematic hardening is said to take place.

Consider the uniaxial stress–strain curve shown in Fig. 12.3.2. The behavior
is initially linear elastic with slope E (Young’s modulus) until onset of yielding
at the uniaxial yield stress σY . Thereafter, the material response is elastic–
plastic with the local tangent to the curve, ET , called the elastic–plastic tangent
modulus, continually changing.
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At some stress level σ in the plastic range, if the load is increased to induce
a stress of dσ, it results in a corresponding strain dε. This increment of strain
contains two parts: elastic dεe (recoverable) and plastic dεp (non-recoverable):

dε = dεe + dεp, dεe =
dσ

E
,

dσ

dε
= ET (12.3.6)

The strain-hardening parameter, H, is defined by

H =
dσ

dεp
=

dσ
dε

1− dεe

dε

=
ET

1− ET
E

(12.3.7)

The element stiffness for the linear elastic portion is, say Ke:

Ke =

∫ xb

xa

BTDeB dx (12.3.8)

where De is the linear elasticity matrix (De = E for the uniaxial case). When
the element deforms plastically, De reflects the decreased stiffness. This is
computed, for uniaxial material behavior, by the following procedure: The
increment in load dF causes an incremental displacement du

du = he dε = he (dεe + dεp) , dF = Adσ = AeH dεp (12.3.9)

where he is the length and Ae the area of cross-section of the element. The
effective stiffness is

Eep =
dF

du
=

AeH dεp

he (dεe + dεp)
=
EAe
he

[
1− E

(E +H)

]
(12.3.10)
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Figure 12.3.2

Fig. 12.3.2: A strain-hardening plastic behavior for the uniaxial case.
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The element stiffness for the plastic range becomes,

Kep =

∫ xb

xa

BTDepB dx (12.3.11)

where [Dep] is the material stiffness in the plastic range. For uniaxial case
Dep = Eep.

Equation (12.3.8) is valid when σ < σY and Eq. (12.3.11) is valid for σ > σY .
Note that dσ = σ − σY when σ > σY .

12.3.4 Elastic–Plastic Analysis of a Bar

Here we present a detailed computational procedure for the analysis of an
elastic–plastic problem. The procedure is described via a one-dimensional
elastic–plastic bar problem. We shall consider a linear strain-hardening ma-
terial subjected to an increasing uniaxial load.

12.3.4.1 Update of stresses

At a load-step number r where the deformation is elastic, the stress in a typical
element with the strain increment ∆εr can be readily updated as

σri = σ
(r−1)
i + Ei∆ε

r (12.3.12)

where Ei is the elastic modulus of element i. This linear elastic behavior will
continue until a point where the resulting strain increment will initiate plastic
yielding of the material. Now the updating of the stress in the element is not as
straightforward as given in Eq. (12.3.12), and it can get complicated when the
deformation is partly elastic and partly elastic–plastic, as shown from point A
to point B in the stress–strain curve of Fig. 12.3.3.

To update the stress state from point A to point B, one can first assume
that the deformation is elastic and compute the corresponding elastic stress,
commonly referred to as the elastic stress predictor. Using Eq. (12.3.12), the
elastic stress predictor σe can be calculated as

σei = σ
(r−1)
i + Ei∆ε

r
i (no sum on i) (12.3.13)

Computing the elastic stress predictor brings the stress state from point A to
point A′. A correction is made to transfer the stress state back to the elastic–
plastic state at point B. We introduce a correction factor R (see Fig. 12.3.3)

R =
σei − σy
σei − σ(r−1)

i

(12.3.14)

so that the stress at point B can be written as

σri = σ
(r−1)
i + [(1−R)Ei +RET ] ∆εri (12.3.15)
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Here ET denotes the elastic–plastic tangent modulus, which is related to the
elastic modulus E and strain-hardening parameter H by Eq. (12.3.7). In the
case where the element has already yielded in previous load steps, as illustrated
by point C in Fig. 12.3.3, the approach of determining the elastic stress predictor
and making correction to the stress state at point D still applies with R = 1 in
Eq. (12.3.15):

σri = σ
(r−1)
i + ET∆εri (12.3.16)

12.3.4.2 Update of plastic strain

The extent of plastic flow in a deformed material can be readily characterized
by the measure of plastic strain. To determine the plastic strain in an element
at point B of Fig. 12.3.3, it will be useful to rewrite Eq. (12.3.15) as

σri = σY + ET (R∆εri ) ≡ σY + ∆σri (12.3.17)

Equation (12.3.17) can be interpreted as that adjusts the stress state at
point A to the yield stress before predicting the elastic stress and its correction.
This will allow one to isolate the stress component ∆σri and strain R∆εri that
are involved in the plastic flow. With Eq. (12.3.6), the plastic strain increment
is

∆εrpi = R∆εri −
∆σri
Ei

=

(
1− ET

Ei

)
R∆εri (12.3.18)

Equation (12.3.18) can also be used for elements that have already yielded in
previous load steps by setting R = 1.

1
RA

B
C

D

σei

σ

σ r
i

σ r-1
i

σY

Δε r
i

ε

A′
C′

Figure 12.3.3

Fig. 12.3.3: Transition of elastic to elastic–plastic behavior.

12.3.4.3 Update of yield stress limit

Besides assessing the extent of plastic deformation, the measure of the plastic
strain will become especially crucial for strain-hardening materials where the
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yield limit is a function of the plastic strain. A plot of yield limit against
the plastic strain for a typical linear strain-hardening material is shown in
Fig. 12.3.4. Once the plastic strain occurs, the yield limit will be modified and
updated as

σryi = σY +H ∆εrpi (12.3.19)

H
1

σY

ε p

σ r
yi

Figure 12.3.4

Fig. 12.3.4: Stress–strain behavior of a strain-hardening material.

12.3.4.4 Identification of deformation modes

The updated yield limit will come in handy when one is to check the type of
deformation an element is undergoing. Once the correct type of deformation is
identified, the stress and strain values can then be updated according to Eqs.
(12.3.l5) and (12.3.18). There are four types of deformation:

(a) Elastic Loading: (an element that has not yielded previously continues to
deform elastically)

|σr−1
i | < |σr−1

yi | and |σei| < |σr−1
yi | (12.3.20a)

(b) Elastic–plastic Loading: (an element that has not yielded previously will
deform elastic–plastically)

|σr−1
i | < |σr−1

yi | and |σei| > |σr−1
yi | (12.3.20b)

(c) Plastic Loading: (an element that previously yielded will continue to de-
form plastically)

|σr−1
i | > |σr−1

yi | and |σei| > |σr−1
i | (12.3.20c)

(d) Elastic Unloading: (an element previously yielded is now unloading elas-
tically)

|σr−1
i | > |σr−1

yi | and |σei| < |σr−1
i | (12.3.20d)
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12.3.4.5 Force equilibrium

Since the displacement finite element model is based on the principle of vir-
tual displacements, the solution satisfies the equilibrium equations, provided
the deformation is linearly elastic. However, in the finite element analysis of
elastic–plastic problems equilibrium equations may not be satisfied during the
period when stresses are adjusted to account for plastic strains. Adjustments
must be made to achieve equilibrium at each step by redistributing the forces
neighboring elements.

For example, consider a node N at the interface of element i that has yielded
and the adjacent element i+1 that is still elastic (see Fig. 12.3.5). At this node,
the force equilibrium will be violated during the analysis because the force in
element i is limited such that the stress in the element does not exceed the yield
stress. The difference between the force calculated using the elastic analysis and
the plastic force must now be taken up by all other elastic elements in the mesh.
Thus to restore equilibrium of forces, a force correction must be made at the
node N :

∆F = Fi − Fi+1 − FN (12.3.21)

However, to preserve the finite element equations of the original problem (to
retain the same forces in other unaffected elements), the force correction cannot
be imposed as a nodal force. Instead, the force correction may be applied as a
nodal displacement

∆ucN =
∆F Li
ETAi

(12.3.22)

where Li and Ai are the length and cross-sectional area of element i. This
correction procedure will continue until force equilibrium at all nodes is restored,
within an acceptable error of tolerance. Figure 12.3.6 contains the flow chart
of various steps in the elastic–plastic analysis of a typical problem.

i i+1

N

FN
Fi+1Fi

ΔF

Figure 12.3.5

Fig. 12.3.5: Force equilibrium at node N .

12.3.4.6 A numerical example

Consider a bar of length 5 m that is fixed at one end and is subjected to a
uniform body force f . The material properties of the bar are taken as

E = 104 N/m2, A = 1 m2, σy = 5 N/m2, H = 103 N/m2
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Fig. 12.3.6: Flow chart for elastic–plastic analysis of a bar.

The bar is discretized using a mesh of five linear elements. The elastic–
plastic iterative scheme discussed in this section was implemented and the re-
sults are presented in Tables 12.3.1 and 12.3.2. At the start of the analysis
when elements are still elastic, a nominal body force of 0.005 N/m was imposed
to find the maximum stress induced in the elements. The critical load Fcr for
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Table 12.3.1: Nodal displacements for various load steps.

Body force f Node no. Nodal displacement*

0.0050 2 2.2500×10−6

3 4.0000×10−6

4 5.2500×10−6

5 6.0000×10−6

6 6.2500×10−6

1.1111 2 5.0000×10−4

3 8.8889×10−4

4 1.1667×10−3

5 1.3333×10−3

6 1.3889×10−3

1.1161 2 5.2475×10−4 (5.2475×10−4)
3 9.1539×10−4 (9.1539×10−4)
4 1.1944×10−3 (1.1944×10−3)
5 1.3618×10−3 (1.3618×10−3)
6 1.4176×10−3 (1.4176×10−3)

10.0050 2 4.9525×10−2 (4.4525×10−2)
3 8.8044×10−2 (7.8044×10−2)
4 1.1556×10−1 (1.0056×10−1)
5 1.3207×10−1 (1.1207×10−1)
6 1.3257×10−1 (1.1257×10−1)

* Values in parentheses are corrected to satisfy force equilibrium at each node.

the first element to yield was computed from this maximum element stress and
is imposed in the next load-step:

Fcr =
σY f

max|σi|
, i = 1, 2, · · · , N (12.3.23)

Here i is the element number and N is the total number of un-yielded elements.
In the new load-step where f is 1.1111 N/m, the computed results reveal that
the first element (element 1 in this example) had just yielded; up to this point,
the analysis is still elastic. Then another nominal body force of 0.005 N/m is
added to calculate the critical load for the next element to yield. The stiff-
ness of the yielded Element 1 is reduced in this load-step and the results in
Table 12.3.2 indicate a violation of force equilibrium at the nodes connecting
the yielded element, except for the node that is fixed. Corrections to the nodal
displacements were made until equilibrium was satisfied at all nodes. Only
then, the critical load for the next element to yield could be calculated and the
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Table 12.3.2: Element stresses and strains for various load steps.

Body force Element Total strain Plastic strain Bar force
f number ε εp |F | = σA

0.0050 1 2.2500×10−6 0 0.0225
2 1.7500×10−6 0 0.0175
3 1.2500×10−6 0 0.0125
4 0.7500×10−6 0 0.0075
5 0.2500×10−6 0 0.0025

1.1111 1* 5.0000×10−4 0 5.0000
2 3.8889×10−4 0 3.8889
3 2.7778×10−4 0 2.7778
4 1.6667×10−4 0 1.6667
5 0.5556×10−4 0 0.5556

1.1161 1 5.5248×10−4 4.5680×10−3 9.5680
2 3.9064×10−4 0 3.9064
3 2.7903×10−4 0 2.7903
4 1.6742×10−4 0 1.6742
5 0.5581×10−4 0 0.5581

Corrected 1 5.2475×10−4 0.2250×10−4 5.0225
to satisfy 2 3.9064×10−4 0 3.9064

force 3 2.7903×10−4 0 2.7903
equilibrium 4 1.6742×10−4 0 1.6742

5 0.5581×10−4 0 0.5581
. . . . . . . . . . . . . . .

10.0050 1 4.9525×10−2 4.4568×10−2 49.5680
2 3.8519×10−2 3.4563×10−2 39.5630
3 2.7514×10−2 2.4558×10−2 29.5580
4 1.6508×10−2 1.4553×10−2 19.5530
5 0.5503×10−2 0.4548×10−2 9.5480

Corrected 1 4.4525×10−2 4.0023×10−2 45.0225
to satisfy 2 3.3519×10−2 3.0018×10−2 35.0175

force 3 2.2514×10−2 2.0013×10−2 25.0125
equilibrium 4 1.1508×10−2 1.0008×10−2 15.0075

5 5.0275×10−4 0.0025×10−4 5.0025

* Element just yielded at that load step.

procedure is repeated until all elements yield. Reaction forces at the fixed end
of the bar against the free-end displacements are plotted in Fig. 12.3.7, to-
gether with the results from the commercial finite element software ABAQUS.
There is a very good agreement with the solutions generated by the iterative
scheme discussed and those obtained with ABAQUS. A 20-element mesh also
produced results identical to those in Fig. 12.3.7; the results are also verified us-
ing ABAQUS. Figure 12.3.8 contains the true stress–strain diagram of Element
1, where one may note that the elastic–plastic material curve is recovered.
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Fig. 12.3.7: Reaction forces versus nodal displacements at bar end.
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Fig. 12.3.8: True stress–strain curve of Element 1.

This completes a discussion of the elastic–plastic finite element models of
one-dimensional problems. Extension of the ideas discussed here can be ex-
tended to beams and plates. The book by Owen and Hinton [289] provides
the necessary theoretical formulations and computer programs for interested
readers (also see [290]).
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12.4 Nonlinear Viscoelastic Analysis of the
Euler–Bernoulli and Timoshenko Beams

12.4.1 Introduction

There are many engineering materials that cannot be adequately modeled using
the classical elasticity formulation. One category of such materials is the set
of viscoelastic materials, examples of which include polymers, concrete struc-
tures and metals at elevated temperatures. The theoretical foundations for
viscoelasticity are well established [3, 291–295]. Analytical methods have been
employed successfully in the study of the mechanical response of viscoelastic
continua. The Laplace transform method was employed by Flügge [291] in the
analysis of viscoelastic beams. The correspondence principle has also been used
by Christensen [292] and Findley, Lai, and Onaran [296] to convert linear elas-
ticity solutions into viscoelasticity solutions through the use of integral trans-
formations [3]. Analytical solutions based on the Laplace transform method
or correspondence principle, however, are limited to linear problems with very
simple geometric configurations, boundary conditions, and material models.

Numerical methods provide a powerful framework for obtaining approximate
solutions to viscoelasticity problems. In particular, the finite element method
has been employed successfully in the analysis of viscoelastic bodies by many
researchers. Taylor, Pister, and Goudreau [297] used the finite element method
in conjunction with a recurrence relation to solve viscoelasticity problems such
that data from only the previous time step (as opposed to the entire defor-
mation history) is needed in determining a body’s configuration at the current
time step. Oden and Armstrong [298] developed a finite element framework for
thermoviscoelasticity and presented numerical solutions to thick-walled cylin-
der problems with time-dependent boundary conditions. In their work, they
extended the recurrence formulation to nonlinear problems. Additional general
finite element formulations for viscoelastic continua can be found in [299–302].

Although three-dimensional finite element formulations are applicable to
continua in general, it is often computationally advantageous to specialize these
models to structural elements such as beams, plates, and shells. There are a
variety of finite element models in the literature for viscoelastic beams. Most
of these models employ some form of either the Euler–Bernoulli or Timoshenko
beam theories. The major challenges encountered in any viscoelastic finite
element formulation are due to the viscoelastic constitutive equations, often
expressed in convolution form. Rencis, Saigal, and Jong [303] presented a simple
Euler–Bernoulli beam finite element model using an incremental approach. In
their analysis, the viscoelastic convolution integrals are replaced by creep strain
increments in the form of fictitious body forces.

The Laplace transform approach has been employed by several researchers
[304–306] in conjunction with the finite element method. Chen [304] successfully
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analyzed viscoelastic Timoshenko beams by converting the time-dependent and
convolution form of the finite element equations into a set of algebraic equations
in s space. The solution in the time domain was determined through a numerical
inversion of the Laplace transform. In his analysis, Chen assumed that the
Poisson ratio is constant. This assumption is consistent with the findings of
Zheng-you, Gen-guo, and Chang-jun [307], who presented analytical solutions
for Timoshenko beams with time-dependent and time-independent Poisson’s
ratios. Aköz and Kadioğlu [305] presented two Timoshenko beam finite elements
using the Laplace–Carson method and a mixed formulation. As in the work by
Chen [304], the finite element formulations require numerical inversion from the
Laplace–Carson domain back to the time domain. Temel, Calim, and Tütüncü
[306] studied the viscoelastic deformation of cylindrical helical rods using the
Timoshenko beam hypotheses. Solutions obtained in the Laplace domain were
transformed to the time domain through the inverse Laplace transform method.

The Fourier transform method has also been used in the finite element
formulation of viscoelastic beams. Chen and Chan [308] developed finite ele-
ment formulations for beams, plates, and shells, and used the Fourier transform
approach to reduce the time dependent formulations into equations in the fre-
quency domain for generalized eigenvalues.

The anelastic displacement formulation (ADN) has also been employed in
the analysis of viscoelastic beams. Trindade, Benjeddou, and Ohayon [309] used
the ADN approach in the analysis of sandwich beams with viscoelastic cores.
In their formulation, they employed the Euler–Bernoulli beam theory for the
outer faces and the Timoshenko beam theory for the inner viscoelastic core.
Pálfalvi [310] also employed the ADN formulation in the analysis of viscoelastic
Euler–Bernoulli beams.

An additional method for circumventing challenges associated with the con-
volution integral is the Golla–Hughes–McTavish (GHM) method. The method
is described in the publications by McTavish and Hughes [311, 312]. In the
GHM method, the Laplace transform approach is used to convert the viscoelas-
tic time-dependent equations into the Laplace domain. An auxiliary coordinate
(or dissipation coordinate) is also introduced. The equations are then converted
into an equivalent set of equations in the time domain that bears a standard
dynamics form without any convolution integrals. The GHM method was used
successfully by Balamurugan and Narayanan [313, 314] in the transient finite
element analysis of Timoshenko beams possessing viscoelastic layers.

It has been noted that when the relaxation moduli can be expressed as a
Prony series, the linear viscoelastic constitutive equations in convolution form
can be expressed as an equivalent set of ordinary differential equations in terms
of a collection of internal strain variables. Johnson, Tessler, and Dambach [315]
applied this approach to the analysis of high-order viscoelastic beams where
the effects of shear deformation and transverse extensions were included in the
formulation. This method has also been employed by Austin and Inman [316].
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Finite element formulations for Euler–Bernoulli and Timoshenko beams
have also been formulated using the fractional derivative viscoelastic consti-
tutive model by Galucio, Deü, and Ohayon, [317] in the analysis of sandwich
beam structures. Ranzi and Zona [318] analyzed a composite steel–concrete
beam structure via the finite element method using an elastic formulation for
the steel and a viscoelastic constitutive relation for the concrete. The Timo-
shenko beam theory was used for the steel and Euler–Bernoulli beam theory for
the concrete. In their formulation, the trapezoidal rule was employed to replace
the convolution integral with a summation of quantities.

The viscoelastic beam finite element formulations reviewed above are re-
stricted to infinitesimal strain and small deformation analysis. As a result,
these models are unable to account for nonlinear geometric effects that can be
significant when loads are sufficiently large. Recently, Payette and Reddy [319,
320], Vallala, Payette, and Reddy [321], and Vallala, Ruimi, and Reddy [322]
presented quasi-static finite element formulations for Euler–Bernoulli (EBT),
Timoshenko (TBT), and Reddy (RBT) beam theories with linear viscoelastic
material properties.

In this section, following the work of Payette and Reddy [319], weak-form
finite element models for the nonlinear quasi-static analysis of initially straight
viscoelastic Euler–Bernoulli and Timoshenko beams are presented using the
principle of virtual work. The mechanical properties of the beams are consid-
ered to be linear viscoelastic. However, large transverse displacements, moder-
ate rotations, and small strains are allowed by retaining the von Kármán strain
components of the simplified Green–Lagrange strain tensor in the formulation.
The fully-discretized finite element equations are developed using the trape-
zoidal rule in conjunction with a two-point recurrence relation. The resulting
finite element equations, therefore, necessitate data storage from the previous
time step only, and not the entire deformation history. Membrane locking is
eliminated from the Euler–Bernoulli formulation through the use of selective
reduced Gauss–Legendre quadrature. Membrane and shear locking are both
circumvented in the Timoshenko beam finite element by employing a family of
high-order Lagrange polynomials. A Newton iterative scheme is used to solve
the nonlinear finite element equations.

12.4.2 Governing Equations

12.4.2.1 Displacement and strain fields

There are a number of theories that are used to represent the kinematics for the
deflection of beams (see Reddy [323] for a review of the beam theories), and two
of them, namely, the Euler–Bernoulli beam theory (EBT) and the Timoshenko
beam theory (TBT), were discussed in detail in Chapter 5. For the sake of
ready reference, here we review the kinematics of the two beam theories.
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The Euler–Bernoulli beam theory is based on the following displacement
field:

u1 (x, z, t) = u (x, t)− z ∂w
∂x

u3 (x, z, t) = w (x, t)
(12.4.1)

where u is the axial deflection of the mid-plane (x, 0) of the beam, and w
represents the transverse deflection of the mid-plane. The x -coordinate is taken
along the beam length, and the z -coordinate along the thickness direction of
the beam. Deformation is therefore confined to the xz -plane. The Euler–
Bernoulli displacement field implies that straight lines orthogonal to the mid-
surface before deformation remain so after deformation. The nonzero strain
component for the Euler–Bernoulli beam theory can be expressed as

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2
(12.4.2)

The Timoshenko beam theory is based on the displacement field

u1 (x, z, t) = u (x, t) + zφx (x, t)

u3 (x, z, t) = w (x, t)
(12.4.3)

where φx denotes the rotation of a transverse normal about the y axis. The
nonzero strain components for the Timoshenko theory are

εxx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

+ z
∂φx
∂x

γxz = φx +
∂w

∂x

(12.4.4)

12.4.2.2 Linear viscoelastic constitutive equations

For linear viscoelastic materials, the one-dimensional constitutive equations re-
lating the components of the second Piola–Kirchhoff stress tensor σ and the
Green–Lagrange strain tensor ε may be expressed in the following integral
forms:

σxx (x, t) = E (0) εxx (x, t) +

∫ t

0
Ė (t− s) εxx (x, s) ds (12.4.5)

σxz (x, t) = G (0) γxz (x, t) +

∫ t

0
Ġ (t− s) γxz (x, s) ds (12.4.6)

where E(t) and G(t) are the relaxation moduli. The specific forms of E(t) and
G(t) will in general depend upon the material model employed. For the present
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analysis we assume that E(t) and G(t) can be expressed in terms of a Prony
series of order n as

E(t) = E0 +
n∑
i=1

Eie
− t

τE
i , G(t) = G0 +

n∑
i=1

Gie
− t

τG
i (12.4.7)

It is important to note that the integral constitutive equations given in Eqs.
(12.4.5) and (12.4.6) above are only valid for materials with bounded creep re-
sponse. In addition the present constitutive models assume that a discontinuity
exits in the response only at t = 0.

12.4.3 Weak Forms

The finite element models of the Euler–Bernoulli and Timoshenko beam theories
in the present work are developed by applying the principle of virtual work (or
principle of virtual displacements) to a typical beam finite element. In our finite
element formulation we discretize the computational domain Ω = [0, L] into a
set of N non-overlapping subdomains Ωe = [xea, x

e
b], such that Ω =

⋃N
e=1 Ωe.

The quasi-static form of the virtual work expression can be expressed over the
volume V e = Ae × Ωe of a typical finite element as∫ xeb

xea

∫
Ae

(δε : σ − δu · f) dAdx−
∮

Γe
δu · t ds = 0 (12.4.8)

where Ae is the cross-sectional area of a typical beam element, Γe = ∂V e and δ
is the variational operator. The additional quantities f and t are the body force
and traction vectors, respectively. Equation (12.4.8) is the weak form of the
classical Euler equations of motion for a continuous body. It is this expression
that will be used in the development of our finite element models for each beam
theory.

12.4.3.1 The Euler–Bernoulli beam theory

The virtual work principle results in the weak forms of the Euler–Bernoulli
beam equations. The variational problem for the EBT is to find (u,w) ∈
H1 (Ωe) ×H2 (Ωe) for all (δu, δw) ∈ H1 (Ωe) ×H2 (Ωe), where Hm (Ωe) is the
Hilbert space of order m, such that

0 =

∫ xb

xa

(
∂δu

∂x
Nxx − fδu

)
dx−Q1δu (xa)−Q4δu (xb) (12.4.9)

0 =

∫ xb

xa

(
∂δw

∂x

∂w

∂x
Nxx −

∂2δw

∂x2
Mxx − qδw

)
dx−Q2δw (xa)

−Q3

(
−∂δw
∂x

)∣∣∣∣
x=xa

−Q5δw (xb)−Q6

(
−∂δw
∂x

)∣∣∣∣
x=xb

(12.4.10)
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where Qj are the generalized nodal forces. In Eqs. (12.4.9) and (12.4.10) and
throughout the rest of this section, f and q are distributed axial and trans-
verse loads, respectively. In addition, A is the cross-sectional area and I is
the moment of inertia. For the sake of brevity we have dropped superscripts
e from quantities in the above equations and throughout the remainder of this
work. The internal normal force Nxx and bending moment Mxx in the above
equations can be expressed in terms of the displacements using the viscoelastic
constitutive relations as

Nxx = E (0)A

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

+

∫ t

0
Ė (t− s)A

[
∂u (x, s)

∂x
+

1

2

(
∂w (x, s)

∂x

)2
]
ds (12.4.11)

Mxx = −E (0) I
∂2w

∂x2

−
∫ t

0
Ė (t− s) I ∂

2w (x, s)

∂x2
ds (12.4.12)

12.4.3.2 The Timoshenko beam theory

For the Timoshenko beam theory, the variational or weak form problem is to
find (u,w, φx) ∈ H1 (Ωe)×H1 (Ωe)×H1 (Ωe) for all (δu, δw, δφx) ∈ H1 (Ωe)×
H1 (Ωe)×H1 (Ωe) such that

0 =

∫ xb

xa

(
∂δu

∂x
Nxx − δu f

)
dx−Q1δu (xa)−Q4δu (xb) (12.4.13)

0 =

∫ xb

xa

(
∂δw

∂x

∂w

∂x
Nxx +

∂δw

∂x
Qx − δw q

)
dx

−Q2δw (xa)−Q5δw (xb) (12.4.14)

0 =

∫ xb

xa

(
∂δφx
∂x

Mxx + δφxQx

)
dx−Q3δφx (xa)−Q6δφx (xb) (12.4.15)

In addition to the normal forceNxx and bending momentMxx, the TBT also ad-
mits a transverse shear force Qx. For the Timoshenko formulation, the internal
reactions can be expressed in terms of the generalized displacement components
as

Nxx = E (0)A

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

+

∫ t

0
Ė (t− s)A

[
∂u (x, s)

∂x
+

1

2

(
∂w (x, s)

∂x

)2
]
ds (12.4.16)
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Mxx = E (0) I
∂φx
∂x

+

∫ t

0
Ė (t− s) I ∂φx (x, s)

∂x
ds (12.4.17)

Qx = KsG (0)A

(
φx +

∂w

∂x

)
+

∫ t

0
KsĠ (t− s)A

(
φx (x, s) +

∂w (x, s)

∂x

)
ds (12.4.18)

whereKs is the shear correction coefficient. This factor equates the shear energy
present in the TBT with what is calculated from the equilibrium equations of
elasticity. The quantities Qj are the generalized nodal forces in the Timoshenko
beam finite element.

12.4.4 Semi-Discrete Finite Element Models

In this section we present the semi-discrete finite element models for the classical
and shear deformable beam theories. For each beam finite element formulation
the resulting nonlinear semi-discrete equations can be expressed in matrix form
as

K∆ +

∫ t

0
K̃∆(s) ds = F (12.4.19)

For each beam finite element formulation the matrices in Eq. (12.4.19) can be
expressed in the following partitioned forms:

K =

K11 · · · K1α

...
. . .

...
Kα1 · · · Kαα

 , K̃ =

 K̃11 · · · K̃1α

...
. . .

...

K̃α1 · · · K̃αα

 (12.4.20)

∆ =
{

(∆1)T · · · (∆α)T
}T
, F =

{
(F1)T · · · (Fα)T

}T
(12.4.21)

where α = 2 for the Euler–Bernoulli beam theory and α = 3 for the Timoshenko
beam theory.

12.4.4.1 The Euler–Bernoulli beam finite element

For the EBT finite element model we introduce the following interpolation
scheme of the displacement field variables

u (x, t) =

2∑
j=1

∆1
j (t)ψ

(1)
j (x), w (x, t) =

4∑
j=1

∆2
j (t)ψ

(2)
j (x) (12.4.22)

where ∆1
j and ∆2

j are the generalized displacements at the nodes and ψ
(1)
j ∈

H1 (Ωe) and ψ
(2)
j ∈ H2 (Ωe) are the linear Lagrange and Hermite cubic inter-

polation functions, respectively. The interpolation functions can be expressed
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with respect to the natural coordinate

ξ =
2 (x− xa)

hx
− 1 (12.4.23)

as

ψ
(1)
1 =

1

2
(1− ξ) , ψ

(1)
2 =

1

2
(1 + ξ) (12.4.24)

ψ
(2)
1 =

1

4
(ξ − 1)2 (ξ + 2) , ψ

(2)
2 = −hx

8
(ξ − 1)2 (ξ + 1)

ψ
(2)
3 = −1

4
(ξ + 1)2 (ξ − 2) , ψ

(2)
4 = −hx

8
(ξ + 1)2 (ξ − 1)

(12.4.25)

In the above equations and throughout the rest of this paper, hx = xb − xa is
the length of a given finite element. Inserting Eq. (12.4.22) into Eqs. (12.4.9)
and (12.4.10) results in the semi-discrete finite element equations for the Euler–
Bernoulli beam theory. The resulting matrices can be determined by the fol-
lowing formulae [compare with Eq. (5.2.31)]:

K11
ij =

∫ xb

xa

E (0)A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K12
ij =

1

2
K21
ji =

1

2

∫ xb

xa

(
E (0)A

∂w

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx

K22
ij =

∫ xb

xa

E (0) I
d2ψ

(2)
i

dx2

d2ψ
(2)
j

dx2
dx

+
1

2

∫ xb

xa

[
E (0)A

(
∂w

∂x

)2
]
dψ

(2)
i

dx

dψ
(2)
j

dx
dx

K̃11
ij =

∫ xb

xa

Ė (t− s)A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K̃12
ij =

1

2

∫ xb

xa

(
Ė (t− s)A∂w (x, s)

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx

K̃21
ij =

∫ xb

xa

(
Ė (t− s)A∂w (x, s)

∂x

)
dψ

(2)
i

dx

dψ
(1)
j

dx
dx

K̃22
ij =

∫ xb

xa

Ė (t− s) I
d2ψ

(2)
i

dx2

d2ψ
(2)
j

dx2
dx

+
1

2

∫ xb

xa

(
Ė (t− s)A∂w

∂x

∂w (x, s)

∂x

)
dψ

(2)
i

dx

dψ
(2)
j

dx
dx

(12.4.26)
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F 1
i =

∫ xb

xa

fψ
(1)
i dx+Q1ψ

(1)
i (xa) +Q4ψ

(1)
i (xb)

F 2
i =

∫ xb

xa

q ψ
(2)
i dx+Q2ψ

(2)
i (xa) +Q5ψ

(2)
i (xb)

+Q3

(
−
∂ψ

(2)
i

∂x

)∣∣∣∣∣
x=xa

+Q6

(
−
∂ψ

(2)
i

∂x

)∣∣∣∣∣
x=xb

(12.4.27)

It is important to note that nonlinear quantities in the stiffness coefficients
of Eq. (12.4.26) and throughout the remainder of this section are functions of
current time t (as opposed to s), unless explicitly stated otherwise.

12.4.4.2 The Timoshenko beam finite element

To construct the finite element model for the TBT, we approximate the depen-
dent variables using the following independent finite element interpolations:

u(x, t) =

p1∑
j=1

∆1
j (t)ψ

(1)
j (x)

w(x, t) =

p2∑
j=1

∆2
j (t)ψ

(2)
j (x)

φx(x, t) =

p3∑
j=1

∆3
j (t)ψ

(3)
j (x)

(12.4.28)

where ψ
(α)
j ∈ H1(Ωe) (α = 1, 2, 3) are Lagrange interpolation functions of degree

(p1−1), (p2−1), and (p3−1), respectively. The Lagrange interpolation functions
are defined as [2]

ψ
(α)
j (ξ) =

∏pα

k=1,k 6=j

ξ − ξk
ξj − ξk

(12.4.29)

where ξk is the value of ξ at the kth node of a typical finite element. The
quantities ∆α

j (t) are once again the generalized displacements at the nodes.
Substituting Eq. (12.4.28) into Eqs. (12.4.13)–(12.4.15), we obtain the semi-

discrete finite element equations (i.e. ordinary differential equations in time)
for the Timoshenko beam theory. The resulting matrices can be defined by the
following expressions [compare with Eq. (5.3.26)]:

K11
ij =

∫ xb

xa

E(0)A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K12
ij =

1

2
K21
ji =

1

2

∫ xb

xa

(
E(0)A

∂w

∂x

)dψ(1)
i

dx

dψ
(2)
j

dx
dx
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K13
ij = K31

ji = K̃13
ij = K̃31

ji = 0

K22
ij =

∫ xb

xa

A
[1

2
E(0)

(∂w
∂x

)2
+KsG(0)

]dψ(2)
i

dx

dψ
(2)
j

dx
dx

K23
ij = K32

ji =

∫ xb

xa

KsG(0)A
dψ

(2)
i

dx
ψ

(3)
j dx

K33
ij =

∫ xb

xa

(
E(0)I

dψ
(3)
i

dx

dψ
(3)
j

dx
+KsG(0)Aψ

(3)
i ψ

(3)
j

)
dx

K̃11
ij =

∫ xb

xa

Ė(t− s)A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K̃12
ij =

1

2

∫ xb

xa

(
Ė(t− s)A ∂w(x, s)

∂x

)dψ(1)
i

dx

dψ
(2)
j

dx
dx

K̃21
ij =

∫ xb

xa

(
Ė(t− s)A ∂w (x, s)

∂x

)dψ(2)
i

dx

dψ
(1)
j

dx
dx

K̃22
ij =

∫ xb

xa

A
(1

2
Ė(t− s)∂w

∂x

∂w(x, s)

∂x
+KsĠ(t− s)

)dψ(2)
i

dx

dψ
(2)
j

dx
dx

K̃23
ij = K̃32

ji =

∫ xb

xa

KsĠ(t− s)A
dψ

(2)
i

dx
ψ

(3)
j dx

K̃33
ij =

∫ xb

xa

(
Ė(t− s)I

dψ
(3)
i

dx

dψ
(3)
j

dx
+KsĠ(t− s)Aψ(3)

i ψ
(3)
j

)
dx

(12.4.30)

and

F 1
i =

∫ xb

xa

ψ
(1)
i fdx+Q1ψ

(1)
i (xa) +Q4ψ

(1)
i (xb)

F 2
i =

∫ xb

xa

ψ
(2)
i qdx+Q2ψ

(2)
i (xa) +Q5ψ

(2)
i (xb)

F 3
i = Q3ψ

(3)
i (xa) +Q6ψ

(3)
i (xb)

(12.4.31)

12.4.5 Fully Discretized Finite Element Models

12.4.5.1 Time discretization using recurrence formulae

The fully discretized finite element equations are obtained by partitioning the
time interval [0, T ] ⊂ R of interest in the analysis into a set of N non-overlapping
subintervals such that [

0, T
]
=

N⋃
k=1

[
tk, tk+1

]
(12.4.32)
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The solution is obtained by solving an initial value problem within each subre-
gion

[
tk, tk+1

]
, where the solution is known at t = tk. The convolution integral

present in the semi-discrete finite element equations is approximated using the
trapezoidal rule within each time interval. A direct temporal integration, how-
ever, is computationally unattractive as it requires the need to store the entire
deformation history. When N is large, the computational time expended at
a given time step can become dominated by the evaluation of the convolution
integral.

In the present analysis we develop a recurrence formula for evaluating the
convolution terms that circumvents the need to explicitly store and use the
entire deformation history. The present formulation requires only the storage
of the generalized displacements and a set of internal variables evaluated at the
Gauss points, both from the previous time step only. In presenting the general
ideas we note that the convolution integral appearing in Eq. (12.4.19) can be
expressed as∫ tN

0

[
K̃
]{

∆ (s)
}
ds =

N−1∑
k=1

∫ tk+1

tk

[
K̃
]{

∆ (s)
}
ds (12.4.33)

The recurrence formulation relies on the following multiplicative decomposition
of the relaxation moduli [324]

Ė (tk+1 − s) =

n∑
l=1

e
−∆tk
τE
l Ėl (tk − s)

Ġ (tk+1 − s) =

n∑
l=1

e
−∆tk
τG
l Ġl (tk − s)

(12.4.34)

where ∆tk = tk+1 − tk. The above equations hold since the relaxation moduli
are expressed in terms of Prony series. Equation (12.4.33) can be expressed in
index notation at an arbitrary time step t = ts as

Xi (ts) =
s−1∑
k=1

∫ tk+1

tk

K̃ij∆j (s) ds ∼=
n∑
l=1

NGP∑
m=1

αmX̄
lm
i (ts) (12.4.35)

where αm are parameters and Einstein’s summation convention is used. In
the above expression we have approximated each temporal integral using the
trapezoidal rule. As noted previously, Gauss quadrature is employed in evalu-
ation of K̃ij , resulting in the summation over m (where NGP is the number of
Gauss points). In practice the above approximation is applied in the evaluation
of each temporal integral of the individual terms comprising each component
K̃γβ
ij ∆β

j (s). When applied to a specific term, the quantity X̄ lm
i (ts) assumes the
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following possible forms:

X̄ lm
i (ts) = e

−∆ts−1

τE
l X̄ lm

i (ts−1)

−2ΓEl

(
e
−∆ts−1

τE
l gmi (ts−1) + gmi (ts)

)
(12.4.36)

X̄ lm
i (ts) = e

−∆ts−1

τG
l X̄ lm

i (ts−1)

−2ΓGl

(
e
−∆ts−1

τG
l gmi (ts−1) + gmi (ts)

)
(12.4.37)

where

ΓEl =
∆ts−1

4

El
τEl

, ΓGl =
∆ts−1

4

Gl
τGl

(12.4.38)

and Eq. (12.4.36) is used to approximate the integral of K̃γβ
ij ∆β

j (s) involving
viscoelastic relaxation quantities. Likewise Eq. (12.4.37) is employed for quan-
tities involving shear terms. The specific forms of αm and gmi (ts) vary for
each component. The above equations represent recurrence formulae in terms
of the internal variables X̄ lm

i (ts) that bypass the need to store solution data
at every time step in the evaluation of Eq. (12.4.35). The present formulation
therefore requires the retention of

{
∆ (ts)

}
and X̄ lm

i (ts−1) only. We note that
X̄ lm
i (t1) = 0.

Using Eqs. (12.4.35)–(12.4.37) we obtain the following set of finite element
equations for the generalized displacements at the current time step[

K̄
]
s

{
∆
}
s
=
{
F
}
s
−
{
Q̃
}
s

(12.4.39)

where we have introduced the notation
{

∆
}
s
=
{

∆ (ts)
}

. The specific forms of[
K̄
]
s

and
{
Q̃
}
s

for each beam theory are presented in the next section.
Next, we present formulae for determining the components of the fully dis-

cretized EBT and TBT finite element models. Formulae for determining the
tangent stiffness matrices arising from the Newton linearization of the finite
element equations are also provided.

12.4.5.2 The Euler–Bernoulli beam finite element

The additional matrices introduced in the fully discretized form of the EBT
finite element equations can be determined from the following formulae:

K̄11
ij =

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)
A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K̄12
ij =

1

2

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)(
A
∂w

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx
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K̄21
ij =

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)(
A
∂w

∂x

)
dψ

(2)
i

dx

dψ
(1)
j

dx
dx (12.4.40)

K̄22
ij =

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)
I
d2ψ

(2)
i

dx2

d2ψ
(2)
j

dx2
dx

+
1

2

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)
A

(
∂w

∂x

)2 dψ
(2)
i

dx

dψ
(2)
j

dx
dx

The components of the viscoelastic force vector
{
Q̃
}
s

can be expressed as{
Q̃1
}
s
=
{

1Q̄1
}

+
{

2Q̄1
}
,
{
Q̃2
}
s
=
{

1Q̄2
}

+
{

2Q̄2
}

+
{

3Q̄2
}

(12.4.41)

where

1Q̄1
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

]
∆1
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

1X̄ lm
i (ts−1) (12.4.42)

2Q̄1
i =

∆ts−1

4
Ė (∆ts−1)

[∫ xb

xa

A
∂w (x, ts−1)

∂x

dψ
(1)
i

dx

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

2X̄ lm
i (ts−1) (12.4.43)

1Q̄2
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
∂w (x, ts−1)

∂x

dψ
(2)
i

dx

dψ
(1)
j

dx
dx

]
∆1
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

∂w (xm, ts)

∂x
3X̄ lm

i (ts−1) (12.4.44)

2Q̄2
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

I
d2ψ

(2)
i

dx2

d2ψ
(2)
j

dx2
dx

]
∆2
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

4X̄ lm
i (ts−1) (12.4.45)

3Q̄2
i = Ė (∆ts−1)

∆ts−1

4

[∫ xb

xa

A
∂w (x, ts−1)

∂x

∂w (x, ts−1)

∂x

dψ
(2)
i

dx

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

∂w (xm, ts)

∂x
5X̄ lm

i (ts−1) (12.4.46)
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The history terms jX̄ lm
i (ts) introduced in Eqs. (12.4.42)–(12.4.46) can be ex-

pressed as

1X̄ lm
i (ts) = −2ΓEl A

dψ
(1)
i (xm)

dx

dψ
(1)
j (xm)

dx

(
e
−∆ts−1

τE
l ∆1

j (ts−1) + ∆1
j (ts)

)
Wm

+e
−∆ts−1

τE
l

1X̄ lm
i (ts−1) (12.4.47)

2X̄ lm
i (ts) = −ΓEl A

dψ
(1)
i (xm)

dx

dψ
(2)
j (xm)

dx

(
∂w (xm, ts−1)

∂x
e
−∆ts−1

τE
l ∆2

j (ts−1)

+
∂w (xm, ts)

∂x
∆2
j (ts)

)
Wm + e

−∆ts−1

τE
l

2X̄ lm
i (ts−1) (12.4.48)

3X̄ lm
i (ts) = −2ΓEl A

dψ
(2)
i (xm)

dx

dψ
(1)
j (xm)

dx

(
e
−∆ts−1

τE
l ∆1

j (ts−1) + ∆1
j (ts)

)
Wm

+e
−∆ts−1

τE
l

3X̄ lm
i (ts−1) (12.4.49)

4X̄ lm
i (ts) = −2ΓEl I

d2ψ
(2)
i (xm)

dx2

d2ψ
(2)
j (xm)

dx2

(
e
−∆ts−1

τE
l ∆2

j (ts−1) + ∆2
j (ts)

)
Wm

+e
−∆ts−1

τE
l

4X̄ lm
i (ts−1) (12.4.50)

5X̄ lm
i (ts) = −ΓEl A

dψ
(2)
i (xm)

dx

dψ
(2)
j (xm)

dx

(
∂w (xm, ts−1)

∂x
e
−∆ts−1

τE
l ∆2

j (ts−1)

+
∂w (xm, ts)

∂x
∆2
j (ts)

)
Wm + e

−∆ts−1

τE
l

5X̄ lm
i (ts−1) (12.4.51)

where Wm are the Gauss weights. In the evaluation of kX̄ lm
i , it is necessary

to express the interpolation functions ψ
(α)
i and nonlinear quantities in terms

of the natural coordinate ξ. Einstein’s summation convention has been used
extensively on the j indices in the above formulae.

12.4.5.3 The Timoshenko beam finite element

For the Timoshenko beam theory, the additional matrices introduced in the
fully discrete form of the finite element equations can be expressed as

K̄11
ij =

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)
A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

K̄12
ij =

1

2
K̄21
ji =

1

2

∫ xb

xa

(
E (0) +

∆ts−1

2
Ė (0)

)
A
∂w

∂x

dψ
(1)
i

dx

dψ
(2)
j

dx
dx
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K̄13
ij = K̄31

ji = 0

K̄22
ij =

∫ xb

xa

[
1

2

(
E (0) +

∆ts−1

2
Ė (0)

)(
∂w

∂x

)2

+Ks

(
G (0) +

∆ts−1

2
Ġ (0)

)]
A
dψ

(2)
i

dx

dψ
(2)
j

dx
dx (12.4.52)

K̄23
ij = K̄32

ji =

∫ xb

xa

(
G (0) +

∆ts−1

2
Ġ (0)

)
KsA

dψ
(2)
i

dx
ψ

(3)
j dx

K̄33
ij =

∫ xb

xa

[(
E (0) +

∆ts−1

2
Ė (0)

)
I
dψ

(3)
i

dx

dψ
(3)
j

dx

+

(
G (0) +

∆ts−1

2
Ġ (0)

)
KsAψ

(3)
i ψ

(3)
j

]
dx

The components of the viscoelastic force vector
{
Q̃
}
s

can be expressed as{
Q̃1
}
s

=
{

1Q̄1
}

+
{

2Q̄1
}
,
{
Q̃3
}
s
=
{

1Q̄3
}

+
{

2Q̄3
}

+
{

3Q̄3
}{

Q̃2
}
s

=
{

1Q̄2
}

+
{

2Q̄2
}

+
{

3Q̄2
}

+
{

4Q̄2
} (12.4.53)

where

1Q̄1
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
dψ

(1)
i

dx

dψ
(1)
j

dx
dx

]
∆1
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

1X̄ lm
i (ts−1) (12.4.54)

2Q̄1
i = Ė (∆ts−1)

∆ts−1

4

[∫ xb

xa

A
∂w (x, ts−1)

∂x

dψ
(1)
i

dx

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

2X̄ lm
i (ts−1) (12.4.55)

1Q̄2
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
∂w (x, ts)

∂x

dψ
(2)
i

dx

dψ
(1)
j

dx
dx

]
∆1
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

∂w (xm, ts)

∂x
3X̄ lm

i (ts−1) (12.4.56)

2Q̄2
i = Ė (∆ts−1)

∆ts−1

4

[∫ xb

xa

A
∂w (x, ts)

∂x

∂w (x, ts−1)

∂x

dψ
(2)
i

dx

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

∂w (xm, ts)

∂x
4X̄ lm

i (ts−1) (12.4.57)
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3Q̄2
i = KsĠ (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
dψ

(2)
i

dx

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τG
l

5X̄ lm
i (ts−1) (12.4.58)

4Q̄2
i = KsĠ (∆ts−1)

∆ts−1

2

[∫ xb

xa

A
dψ

(2)
i

dx
ψ

(3)
j dx

]
∆3
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τG
l

6X̄ lm
i (ts−1) (12.4.59)

1Q̄3
i = KsĠ (∆ts−1)

∆ts−1

2

[∫ xb

xa

Aψ
(3)
i

dψ
(2)
j

dx
dx

]
∆2
j (ts−1)

+

n∑
l=1

NGP∑
m=1

e
−∆ts−1

τG
l

7X̄ lm
i (ts−1) (12.4.60)

2Q̄3
i = Ė (∆ts−1)

∆ts−1

2

[∫ xb

xa

I
dψ

(3)
i

dx

dψ
(3)
j

dx
dx

]
∆3
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

8X̄ lm
i (ts−1) (12.4.61)

3Q̄3
i = KsĠ (∆ts−1)

∆ts−1

2

[∫ xb

xa

Aψ
(3)
i ψ

(3)
j dx

]
∆3
j (ts−1)

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τG
l

9X̄ lm
i (ts−1) (12.4.62)

The history terms jX̄ lm
i (ts) introduced in Eqs. (12.4.54)–(12.4.62) can be ex-

pressed as

1X̄ lm
i (ts) = −2ΓEl A

dψ
(1)
i (xm)

dx

dψ
(1)
j (xm)

dx

[
e
−∆ts−1

τE
l ∆1

j (ts−1) + ∆1
j (ts)

]
Wm

+e
−∆ts−1

τE
l

1X̄ lm
i (ts−1) (12.4.63)

2X̄ lm
i (ts) = −2ΓEl A

[1

2
e
−∆ts−1

τE
l

∂w (xm, ts−1)

∂x

dψ
(1)
i (xm)

dx

dψ
(2)
j (xm)

dx
∆2
j (ts−1)

+
1

2

∂w (xm, ts)

∂x

dψ
(1)
i (xm)

dx

dψ
(2)
j (xm)

dx
∆2
j (ts)

]
Wm

+e
−∆ts−1

τE
l

2X̄ lm
i (ts−1) (12.4.64)
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3X̄ lm
i (ts) = −2ΓEl A

dψ
(2)
i (xm)

dx

dψ
(1)
j (xm)

dx

[
e
−∆ts−1

τE
l ∆1

j (ts−1) + ∆1
j (ts)

]
Wm

+e
−∆ts−1

τE
l

3X̄ lm
i (ts−1) (12.4.65)

4X̄ lm
i (ts) = −ΓEl A

[
e
−∆ts−1

τE
l

∂w (xm, ts−1)

∂x

dψ
(2)
i (xm)

dx

dψ
(2)
j (xm)

dx
∆2
j (ts−1)

+
∂w (xm, ts)

∂x

dψ
(2)
i (xm)

dx

dψ
(2)
j (xm)

dx
∆2
j (ts)

]
Wm

+e
−∆ts−1

τE
l

4X̄ lm
i (ts−1) (12.4.66)

5X̄ lm
i (ts) = −ΓGl KsA

dψ
(2)
i (xm)

dx

dψ
(2)
j (xm)

dx

(
e
−∆ts−1

τG
l ∆2

j (ts−1) + ∆2
j (ts)

)
Wm

+e
−∆ts−1

τG
l

5X̄ lm
i (ts−1) (12.4.67)

6X̄ lm
i (ts) = −ΓGl KsA

dψ
(2)
i (xm)

dx
ψ

(3)
j (xm)

[
e
−∆ts−1

τG
l ∆3

j (ts−1) + ∆3
j (ts)

]
Wm

+e
−∆ts−1

τG
l

6X̄ lm
i (ts−1) (12.4.68)

7X̄ lm
i (ts) = −ΓGl KsAψ

(3)
i (xm)

dψ
(2)
j (xm)

dx

[
e
−∆ts−1

τG
l ∆2

j (ts−1) + ∆2
j (ts)

]
Wm

+e
−∆ts−1

τG
l

7X̄ lm
i (ts−1) (12.4.69)

8X̄ lm
i (ts) = −2ΓEl I

dψ
(3)
i (xm)

dx

dψ
(3)
j (xm)

dx

(
e
−∆ts−1

τE
l ∆3

j (ts−1) + ∆3
j (ts)

)
Wm

+e
−∆ts−1

τE
l

8X̄ lm
i (ts−1) (12.4.70)

9X̄ lm
i (ts) = −ΓGl KsAψ

(3)
i (xm)ψ

(3)
j (xm)

(
e
−∆ts−1

τG
l ∆3

j (ts−1) + ∆3
j (ts)

)
Wm

+e
−∆ts−1

τG
l

9X̄ lm
i (ts−1) (12.4.71)

12.4.5.4 Solution of nonlinear equations using Newton’s method

The fully discretized finite element equations are nonlinear due to the inclusion
of the von Kármán strains in the formulation. For our analysis we solve the
equations iteratively using the Newton linearization procedure. The resulting
linearized equations are of the form{

∆
}(r)

s
=
{

∆
}(r−1)

s
−
[
T
]−1

s

([
K̄
](r−1)

s

{
∆
}(r−1)

s
−
{
F
}(r−1)

s
+
{
Q̃
}(r−1)

s

)
(12.4.72)

where {∆}(r)s represents the solution at the rth iteration and time t = ts.
The tangent stiffness matrix

[
T
]
s

in Eq. (12.4.72) is defined using Einstein’s
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summation notation as

Tαβij =
∂

∂∆β
j

 k∑
γ=1

n(γ)∑
p=1

K̄αγ
ip ∆γ

p − Q̃αi

 (12.4.73)

where k = 2 for the EBT and k = 3 for the TBT. All quantities in Eq. (12.4.73)
comprising the tangent stiffness matrix are formulated using the solution from
the (r − 1)th iteration. It is important to note that all partial derivatives are
taken with respect to the solution at the current time step.

Applying Newton’s method to the Euler–Bernoulli beam equations results
in the following component representation of the tangent stiffness matrix

T 11
ij = K̄11

ij , T 12
ij = 2K̄12

ij , T 21
ij = K̄21

ij

T 22
ij = K̄22

ij +

∫ xb

xa

A

{(
E (0) +

∆ts−1

2
Ė (0)

)[
∂u

∂x
+

(
∂w

∂x

)2
]

+
∆ts−1

2
Ė (∆ts−1)

[
∂u (x, ts−1)

∂x
+

1

2

(
∂w (x, ts−1)

∂x

)2
]}

dψ
(2)
i

dx

dψ
(2)
j

dx
dx

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

(
3X̄ lm

i (ts−1) + 5X̄ lm
i (ts−1)

) dψ(2)
j (xm)

dx
(12.4.74)

Similarly, Newton’s method results in the following components of the tangent
stiffness matrix for the Timoshenko beam theory

T 11
ij = K̄11

ij , T 12
ij = T 21

ji = 2K̄12
ij , T 13

ij = T 31
ji = 0

T 23
ij = T 32

ji = K̄23
ij , T 33

ij = K̄33
ij

T 22
ij = K̄22

ij +

∫ xb

xa

A

{(
E (0) +

∆ts−1

2
Ė (0)

)[
∂u

∂x
+

(
∂w

∂x

)2
]

+
∆ts−1

2
Ė (∆ts−1)

[
∂u (x, ts−1)

∂x
+

1

2

(
∂w (x, ts−1)

∂x

)2
]}

dψ
(2)
i

dx

dψ
(2)
j

dx
dx

+
n∑
l=1

NGP∑
m=1

e
−∆ts−1

τE
l

(
3X̄ lm

i (ts−1) + 4X̄ lm
i (ts−1)

) dψ(2)
j (xm)

dx
(12.4.75)

12.4.6 Numerical Results

The finite element formulations and procedures developed above are applied
to solve quasi-static nonlinear beam deflection problems. For each problem
considered, solutions using the EBT and TBT beam theories are compared. The
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nonlinear beam finite element equations are solved iteratively using the Newton
procedure as outlined in the Appendix 2. The solution at a given time step is
considered converged once the Euclidean norm of the relative error between
two consecutive solutions is less than a pre-selected tolerance. A tolerance of
ε = 10−6 is used for all numerical simulations in this study.

It has been noted that the Euler–Bernoulli and Timoshenko beam theories
constructed from low-order polynomials suffer from the locking phenomena (see
Sections 5.2.7 and 5.3.4; also see [2, 3]). Full integration of the element matri-
ces for the EBT and TBT theories leads to elements that are overly stiff. For
the EBT element, full integration leads to membrane locking due to inconsis-
tencies in the interpolation orders of u and w. The TBT elements suffer from
membrane locking as well as shear locking in the thin-beam limit. To overcome
these shortcomings, one-point Gauss quadrature is used in the evaluation of
all nonlinear terms for the EBT finite elements. To eliminate shear and mem-
brane locking from the TBT formulation, elements with high-order Lagrangian
interpolation functions are employed. In particular, we introduce the following
full integration TBT elements: TBTLN, TBTQD, TBTCB, and TBTQI; which
have 2, 3, 4, and 6 nodes (corresponding to linear, quadratic, cubic, and quin-
tic), respectively. Interpolation functions of equal order (i.e. p1 = p2 = p3) are
utilized for each TBT element.

12.4.6.1 Material properties

For the present analysis we utilize a viscoelastic material model based on the
experimental findings of Lai and Bakker [325] for a glassy amorphous polymer
material (PMMA). The Prony series parameters for the viscoelastic relaxation
modulus given in Table 12.4.1 were calculated from the published compliance
parameters [325]. For the Timoshenko beam theory it is also necessary to
specify the viscoelastic shear modulus. Although the finite element formulation
places no restriction on the relationship between E (t) and G (t), for the present
analysis we adopt the approach taken by Chen [304] and assume that the shear
and relaxation moduli are related by

G (t) =
E (t)

2 (1 + ν)
(12.4.76)

where ν = 0.40 is Poisson’s ratio of the material, which is assumed to be
independent of time [326].

12.4.6.2 Quasi-static deformation of a beam under uniform load

Here we consider a viscoelastic beam of length L = 100 in and cross section 1
in × 1 in, with material properties given in Table 12.4.1. At t = 0 the beam is
subjected to a time invariant uniform vertical distributed load q = 0.25 lbf/in.
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Table 12.4.1: Viscoelastic material properties.

E0 205.7818 ksi
E1 43.1773 ksi τE1 9.1955× 10−1 s
E2 9.2291 ksi τE2 9.8120× 100 s
E3 22.9546 ksi τE3 9.5268× 101 s
E4 26.2647 ksi τE4 9.4318× 102 s
E5 34.6298 ksi τE5 9.2066× 103 s
E6 40.3221 ksi τE6 8.9974× 104 s
E7 47.5275 ksi τE7 8.6852× 105 s
E8 46.8108 ksi τE8 8.5143× 106 s
E9 58.6945 ksi τE9 7.7396× 107 s

The computational domain is constructed by taking advantage of the symmetry
about x = L/2. For the EBT case, ten reduced integration finite elements (11
nodes) are utilized. For the TBT, we consider ten TBTLN elements (11 nodes),
four TBTQD elements (9 nodes), three TBTCB elements (10 nodes), and two
TBTQI elements (11 nodes). The following three sets of boundary conditions
are considered in the analysis:

1. Hinged at both ends (hinged–hinged)

w (0, t) = u (L/2, t) =
∂w

∂x
(L/2, t) = 0 (12.4.77)

2. Pinned at both ends (pinned–pinned)

u (0, t) = w (0, t) = u (L/2, t) =
∂w

∂x
(L/2, t) = 0 (12.4.78)

3. Clamped at both ends (clamped–clamped)

u (0, t) = w (0, t) =
∂w

∂x
(0, t) = u (L/2, t) =

∂w

∂x
(L/2, t) = 0 (12.4.79)

The three cases above are chosen to demonstrate that the EBT and high-order
TBT (TBTCB and TBTQI) finite elements do not suffer from the membrane
or shear locking phenomena. In addition, each case provides a demonstration of
the geometrically nonlinear capabilities of the finite element models that cannot
be captured by the uncoupled linear formulation.

The load at t = 0 is applied incrementally to ensure convergence of the solu-
tion. Five load steps are utilized with a maximum of 20 iterations for each load
step. At the first load step, the initial guess vector for the solution is chosen to
be the zero vector. This yields the linear solution. At each subsequent iteration
within the first load step, the solution vector from the previous iteration is used
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as the new guess vector. At each new load step, the converged solution from
the previous load step is used as the initial guess vector. At each time step
following t = 0, the finite element equations are solved iteratively using the
Newton procedure without the employment of load steps.

Table 12.4.2: Quasi-static analytical and finite element (TBTQI) results for the max-
imum vertical deflection, wmax, of a hinged–hinged viscoelastic beam under uniform
distributed load, q.

Maximum vertical deflection, wmax

Time, t Exact ∆t = 0.5 ∆t = 1.0 ∆t = 2.0 ∆t = 5.0 ∆t = 10.0

0 7.2980 7.2980 7.2980 7.2980 7.2980 7.2980
200 8.5429 8.5628 8.6217 8.8492 10.2278 14.7260
400 8.6827 8.7032 8.7641 8.9993 10.4291 15.1493
600 8.7680 8.7891 8.8510 9.0910 10.5524 15.4107
800 8.8364 8.8578 8.9207 9.1645 10.6513 15.6214

1,000 8.8945 8.9160 8.9799 9.2270 10.7356 15.8021
1,200 8.9448 8.9665 9.0311 9.2810 10.8087 15.9597
1,400 8.9886 9.0105 9.0758 9.3282 10.8726 16.0982
1,600 9.0271 9.0492 9.1150 9.3697 10.9288 16.2210
1,800 9.0612 9.0835 9.1498 9.4064 10.9787 16.3306

For the hinged–hinged beam (case 1), the vertical deflection coincides with
the exact solution as per the Timoshenko beam theory, which is given by (see
Flügge [191] and Reddy [1])

wmax (t) =
5q0L

4

384I

[
1 + 1.6

1 + ν

Ks

(
h

L

)2
]
D (t) (12.4.80)

where D (t) is the creep compliance, which, for the present study, is taken from
Lai and Bakker [325]. The solution according to the Euler–Bernoulli theory
is obtained by omitting the second term inside the brackets (or by setting
Ks = 0.0). Table 12.4.2 contains a comparison of the exact Timoshenko beam
solution with numerical results obtained using 2 TBTQI beam elements. As is
evident from Table 12.4.2, the error in the solution propagates with an increase
in time. It is also interesting to note that for the current problem the error
incurred by the time step approximation tends to over-predict beam deflections.
It is evident that a rather small time step is necessary to ensure convergence.

Table 12.4.3 contains selected numerical results for the quasi-static beam
deflection for cases 1 through 3 using the EBT and TBT finite elements. A
constant time step ∆t = 1.0 s has been employed with a total simulation time
of 1,800 s. Graphical results for EBT, TBTQD, and TBTQI elements are also
provided in Fig. 12.4.1. At t = 0, the results coincide with the instantaneous
elastic solution where the Young’s modulus is given as E = 535.4 ksi. The
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Table 12.4.3: Quasi-static finite element results for the maximum vertical deflection,
wmax, of a viscoelastic beam under uniform distributed load, q, with three different
sets of boundary conditions and ∆t = 1.0.

Time, t EBT TBTLN TBTQD TBTCB TBTQI

Hinged–hinged
0 7.2961 0.8629 7.0098 7.2939 7.2980

200 8.6194 1.0194 8.1966 8.6151 8.6217
400 8.7617 1.0363 8.3221 8.7571 8.7641
600 8.8486 1.0465 8.3986 8.8439 8.8510
800 8.9183 1.0548 8.4598 8.9134 8.9207

1,000 8.9775 1.0618 8.5118 8.9725 8.9799
1,200 9.0287 1.0678 8.5567 9.0236 9.0311
1,400 9.0733 1.0731 8.5958 9.0681 9.0758
1,600 9.1126 1.0778 8.6301 9.1073 9.1150
1,800 9.1474 1.0819 8.6605 9.1420 9.1498

Pinned–pinned
0 1.2481 0.7258 1.2452 1.2453 1.2452

200 1.3278 0.8210 1.3244 1.3243 1.3242
400 1.3358 0.8307 1.3324 1.3323 1.3322
600 1.3407 0.8366 1.3372 1.3371 1.3370
800 1.3446 0.8413 1.3411 1.3410 1.3409

1,000 1.3478 0.8452 1.3443 1.3442 1.3441
1,200 1.3507 0.8486 1.3471 1.3470 1.3469
1,400 1.3531 0.8516 1.3496 1.3495 1.3494
1,600 1.3553 0.8542 1.3517 1.3516 1.3515
1,800 1.3572 0.8565 1.3536 1.3535 1.3534

Clamped–clamped
0 0.9110 0.1727 0.8832 0.9102 0.9109

200 1.0000 0.2038 0.9707 0.9988 0.9997
400 1.0089 0.2071 0.9795 1.0077 1.0086
600 1.0144 0.2092 0.9848 1.0130 1.0140
800 1.0187 0.2108 0.9891 1.0173 1.0183

1,000 1.0223 0.2122 0.9927 1.0210 1.0220
1,200 1.0255 0.2134 0.9957 1.0241 1.0251
1,400 1.0282 0.2144 0.9984 1.0268 1.0278
1,600 1.0306 0.2154 1.0008 1.0292 1.0302
1,800 1.0327 0.2162 1.0029 1.0313 1.0323

hinged–hinged beam configuration exhibits greater transverse deflection than
the pinned–pinned and clamped–clamped cases. For the hinged–hinged case,
the transverse deflection does not lead to significant axial strain, since the
hinged ends of the beam are able to translate freely in the x-direction. The
pinned–pinned and clamped–clamped beams on the other hand are constrained
from axial motion at x = 0 and x = L/2. As a result, axial strain develops that
offers resistance to transverse deformation of the beam.

There is a very good agreement between the numerical results of each for-
mulation with the exception of the TBTLN element which, as expected, suffers
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Fig. 12.4.1: Maximum vertical deflection, wmax, of a viscoelastic beam under uniform
distributed load, q, with three different sets of boundary conditions.

excessively from shear locking. It has been discussed in Chapter 5 that locking
can be avoided for this element by employing selective reduced integration. Re-
sults for the EBT, TBTCB, and TBTQI are in excellent agreement as the effects
of shear deformation are small. Mesh refinement studies of the TBTQI element
demonstrate that the presented results for this element are fully converged. In
fact, the numerical results presented in Table 12.4.3 for the TBTQI element can
be obtained with only one element. The computational cost involved is in fact
less with one TBTQI element than any of the other elements, as they require
more total nodes for convergence.

An important characteristic of the viscoelastic constitutive model employed
here is that the beam should eventually return to its original configuration
upon the removal of the loads are. To demonstrate that the finite element
models capture this effect, we consider the clamped–clamped beam subject to
the following quasi-static transverse load:

q (t) = q0

{
H (t)− 1

τ (β − α)
[(t− ατ)H (t− ατ)− (t− βτ)H (t− βτ)]

}
(12.4.81)
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where q0 = 0.25 lbf/in, τ = 1, 800 s, and H (t) is the Heaviside function. The
parameters 0 ≤ α ≤ β ≤ 1 are constants. Equation (12.4.81) represents a load
function that is constant in 0 < t < ατ and then linearly decreases to zero from
t = ατ to t = βτ . For t > βτ , the load is maintained at zero. In Fig. 12.4.2 we
present numerical results for various values of α and β, where we have employed
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Fig. 12.4.2: Maximum vertical deflection, wmax, of a clamped–clamped viscoelastic
beam subjected to time-dependent transverse loading q(t).

a constant time step of ∆t = 1.0 s with two TBTQI elements. It is evident
that the beam recovers its original configuration as t tends to infinity once the
applied load is removed.

We also consider the effect that shear strain has on the transverse deflection
of viscoelastic beams. To this end we modify the original thin beam problems
by letting L = 10 in, q = 25 lbf/in, and ∆t = 1.0 s. All other parameters
are kept the same as in the previous examples. In Table 12.4.4 we present
numerical results for the transverse deflection of pinned–pinned and clamped–
clamped beams using EBT, TBTQD, and TBTQI elements. In all cases we note
that the EBT elements under-predict the maximum beam deflections which is
as expected.
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Table 12.4.4: Effect of shear strain on the maximum quasi-static vertical deflection,
wmax, of a viscoelastic beam under uniform distributed load, q.

Maximum vertical deflection, wmax

Pinned–pinned Clamped–clamped

Time t EBT TBTQD TBTQI EBT TBTQD TBTQI

0 0.07184 0.07360 0.07367 0.01459 0.01647 0.01655
200 0.08437 0.08641 0.08649 0.01724 0.01946 0.01955
400 0.08571 0.08777 0.08785 0.01752 0.01978 0.01987
600 0.08652 0.08860 0.08869 0.01769 0.01998 0.02007
800 0.08717 0.08927 0.08935 0.01783 0.02013 0.02023

1,000 0.08773 0.08983 0.08992 0.01795 0.02027 0.02036
1,200 0.08821 0.09032 0.09041 0.01805 0.02038 0.02048
1,400 0.08862 0.09075 0.09083 0.01814 0.02048 0.02058
1,600 0.08899 0.09112 0.09121 0.01822 0.02057 0.02067
1,800 0.08931 0.09145 0.09154 0.01829 0.02065 0.02075

12.5 Summary

In this chapter, finite element models of materially nonlinear elastic and plastic
models of one-dimensional problems are presented, and efficient and accurate
locking-free linear viscoelastic beam finite elements that are capable of under-
going large transverse displacements, moderate rotations, and small strains are
presented. The viscoelastic beam finite element models were developed using
the Euler–Bernoulli and Timoshenko beam theories. The discrete form of the
finite element equations of viscoelastic beams are constructed using a recur-
rence relation such that history data need only be stored from the previous
time step. Numerical examples are presented to demonstrate the capabilities
of the developed numerical models.

Extension of the current formulations to Reddy third-order beam theory
can be found in the works of Payette and Reddy [320]. Extensions to plates
and shells are of great interest and awaiting attention. In addition, it may
also prove useful to extend the current formulation such that more pronounced
geometric nonlinearities can be captured (i.e. full geometric nonlinearity). Fi-
nally, extension to the case where both material and geometric nonlinearities
are accounted for in the formulation is yet to be carried out.

Problems

12.1 Extend the discussion of Section 12.3 to the case of finite strain.

12.2 Extend the discussion of Section 12.3 to Euler–Bernoulli beams made of elastic material
with constitutive relation σxx = Eεxx, where E is given by
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E = E0 + E1

[
du

dx
+

1

2

(
dw

dx

)2
]

(1)

where E0 and E1 are functions of x only. Assume linear strain-displacement relations:

εxx = ε(0)
xx + zε(1)

xx ; ε(0)
xx =

du

dx
, ε(1)

xx = −d
2w

dx2
(2)

12.3 Extend Problem 12.2 to the case with the von Kármán nonlinear strain

εxx =
du

dx
+

1

2

(
dw

dx

)2

− z d
2w

dx2

12.4 Extend the discussion of Section 12.3 to Timoshenko beams made of a material whose
constitutive relation is the same as that given in Problem 12.2 (with a constant Poisson’s
ratio). Use the following strain-displacement relations of the Timoshenko beam theory:

εxx =
du

dx
+

1

2

(
dw

dx

)2

+ z
dφx
dx

, γxz = φx +
dw

dx

12.5 (Reddy beam theory) Develop the weak-forms associated with the nonlinear quasi-static
and fully transient analysis of initially straight viscoelastic beams using the following
kinematic assumptions of the third-order Reddy beam theory [3, 55, 56]:

u1(x, y, z, t) = u(x, t) + zφx(x, t)− z3c1

(
φx(x, t) +

∂w

∂x

)
u2(x, y, z, t) = 0

u3(x, y, z, t) = w(x, t)

(1)

where the x = X (material) coordinate is taken along the beam length, the z =
Z coordinate along the thickness direction of the beam, u is the axial displacement
of a point on the mid-plane (x, 0, 0) of the beam and w represents the transverse
deflection of the mid-plane. When the deformation is small the parameter φx(x, t)
may be interpreted as the rotation of the transverse normal. The constant c1 is equal
to c1 = 4/(3h2), where h is the height of the beam and b is the beam width. The
displacement field of the Reddy beam theory suggests that a straight line perpendicular
to the undeformed mid-plane becomes a cubic curve following deformation, as can be
seen in Fig. P12.5.
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Fig. P12.5: (a) Undeformed configuration and (b) deformed configuration.

12.6 (continuation of viscoelastic Reddy beam finite element) Develop the semidiscrete vis-
coelastic finite element model of the Reddy third-order beam theory.
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12.7 (continuation of viscoelastic Reddy beam finite element) Develop the fully discrete vis-
coelastic finite element model of the Reddy third-order beam theory (i.e. give the
linearized equations in the Newton’s method).
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317. A. C. Galucio, J. F. Deü, and R. Ohayon, “Finite element formulation of viscoelastic
sandwich beams using fractional derivative operators,” Computational Mechanics, 33,
282–291 (2004).

318. G. Ranzi and A. Zona, “A steel-concrete composite beam model with partial interaction
including the shear deformability of the steel component,” Engineering Structures, 29,
3026–3041 (2007).

319. G. S. Payette and J. N. Reddy, “Nonlinear quasi-static finite element formulations
for viscoelastic Euler–Bernoulli and Timoshenko beams,” International Journal for
Numerical Methods in Biomedical Engineering, 26(12), 1736–1755 (2010).

320. G. S. Payette and J. N. Reddy, “A nonlinear finite element framework for viscoelastic
beams based on the high-order Reddy beam theory,” Journal of Engineering Materials
and Technology, 135 (1), 011005-1 to 011005-11 (2013).



REFERENCES 43

321. V. P. Vallala, G. S. Payette, and J. N. Reddy, “Spectral/hp finite element formulation
for viscoelastic beams based on an higher-order beam theory, International Journal of
Applied Mechanics, 4(1), 1–28 (2012).

322. V. P. Vallala, A. Ruimi, and J. N. Reddy, “Nonlinear viscoelastic analysis of orthotropic
beams using a general third-order theory,” Composite Structures, 94, 3759–3768 (2012).

323. J. N. Reddy, “On locking-free shear deformable beam finite elements,” Computer Meth-
ods in Applied Mechanics and Engineering, 149, 113–132 (1997).

324. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer–Verlag, Berlin
(1998).

325. J. Lai and A. Bakker, “3-D Schapery representation for non-linear viscoelasticity and
finite element implementation,” Computational Mechanics, 18, 182–191 (1996).

326. D. W. Van Krevelen, Properties of Polymers, 3rd ed., Elsevier, Amsterdam, The
Netherlands (1990).




