NONLINEAR CONTINUUM FORMULATIONS

An Introduction to Nonlinear Finite Element Analysis

with applications to heat transfer, fluid mechanics, and solid mechanics

CONTENTS

- Introduction to nonlinear continuum mechanics
- Descriptions of motion
- Measures of stresses and strains
- Updated and Total Lagrangian formulations
- Continuum shell element
- Post-buckling of composite panels

Continuum Shell Element 2

MATERIAL TIME DERIVATIVE

Material description

$$\frac{d}{dt}[\phi(\mathbf{X},t)] = \frac{d}{dt}[\phi(\mathbf{X},t)]\Big|_{\mathbf{X}=\text{fixed}} = \frac{\partial\phi}{\partial t}$$

Spatial description

$$\frac{d}{dt}[\phi(\mathbf{x},t)] = \frac{\partial}{\partial t}[\phi(\mathbf{x},t)] + \frac{dx_j}{dt}\frac{\partial}{\partial x_j}[\phi(\mathbf{x},t)]$$
$$= \frac{\partial}{\partial t}[\phi(\mathbf{x},t)] + v_j\frac{\partial}{\partial x_j}[\phi(\mathbf{x},t)]$$
$$= \frac{\partial}{\partial t}[\phi(\mathbf{x},t)] + \mathbf{v} \cdot \nabla \phi(\mathbf{x},t)$$

JN Reddy

LAGRANGIAN DESCRIPTION OF MOTION

Incremental descriptions of deformed configurations

JN Reddy

Kinematics of Deformation (continued)

E Green strain tensor

Continuum Elements 6

MEASURES OF STRAIN

Definitions

Green Incremental Strain Tensor

$$\begin{array}{c} \mathbb{U}_{s}\mathbb{E}_{\mathrm{fil}} & \stackrel{s}{\overset{s}{_{\mathrm{fi}}}} & \stackrel{s}{\overset{s}{\underset{s}}} & \stackrel{s}{\overset{s}{\underset{s}}} & \stackrel{s}{\overset{s}{\underset{s}}} & \stackrel{s}{\overset{s}{\underset{s}}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}{\underset{s}}} & \stackrel{s}{\overset{s}} & \stackrel{s}}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}}{\overset{s}} & \stackrel{s}}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{\overset{s}} & \stackrel{s}{} & \overset{s}} & \stackrel{s}}{\overset{s}} & \stackrel{s}} & \stackrel{s}}{\overset{s}} &$$

$$s"_{ffl} \quad \frac{T}{U} \quad \frac{C_{\dots fi}}{c^{S} f_{fl}} N \quad \frac{C_{\dots fl}}{c^{S} f_{fi}} N \quad \frac{C^{T}_{\dots}}{c^{S} f_{fi}} \frac{C_{\dots}}{c^{S} f_{fl}} N \quad \frac{C_{\dots}}{c^{S} f_{f$$

Linear Green Incremental Strain Tensor Nonlinear Incremental Strain Tensor

Infinitesmal Green-Lagrange Incremental Strain Tensor

"ffl '
$$\frac{T}{U} = \frac{C...fl}{C^{s}fl} N \frac{C...fl}{C^{s}fl}$$

JN Reddy

Continuum Elements 7

STRESS VECTOR

Stress vector

$$\mathbf{t}^{(\hat{\mathbf{n}})} = \lim \Delta a \to 0 \ \frac{\Delta \mathbf{f}}{\Delta a} \qquad \mathbf{t}^{(-\hat{\mathbf{n}})} = -\mathbf{t}^{(\hat{\mathbf{n}})}$$

JN Reddy

Continuum Formulations 8

 $\mathbf{t}^{(\hat{\mathbf{n}})} = \boldsymbol{\sigma} \cdot \hat{\mathbf{n}} \quad \text{or} \quad t_i^{(\hat{\mathbf{n}})} = \boldsymbol{\sigma}_{ij} n_j; \ \mathbf{t}_i = \boldsymbol{\sigma}_{ji} \, \hat{\mathbf{e}}_j, \quad \boldsymbol{\sigma} = \mathbf{t}_j \, \hat{\mathbf{e}}_j = \boldsymbol{\sigma}_{ij} \, \hat{\mathbf{e}}_j \, \hat{\mathbf{e}}_j$

FIRST AND SECOND PIOLA-KIRCHHOFF STRESS TENSORS

P First Piola-Kirchhoff stress tensor

S Second Piola-Kirchhoff stress tensor

Continuum Formulations 10

Conservation of Mass

$$\int_{\Omega} \rho \, dv = \int_{\Omega_0} \rho_0 \, dV \Rightarrow \int_{\Omega_o} \rho \, J dV = \int_{\Omega_0} \rho_0 \, dV$$
$$\rho_0 = \rho \, J$$

Conservation of Linear Momentum

$$\frac{d}{dt} \int_{\Omega} \rho \, \mathbf{v} dv = \int_{\Omega} \rho \mathbf{f} \, dv + \int_{\Gamma} \mathbf{t} \, da$$
$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \sigma^{\mathrm{T}} + \rho \mathbf{f}$$

Continuum Formulations 11

First Piola-Kirchhoff Stress Tensor

U
» ' $^{U}_{U}$ > \$ U £ ' U w ' U s \$ S £

$$K_{U}^{U} > \xi^{U} \pounds L'^{U} d$$
 ' $K^{U} \pounds \xi^{S} \pounds L'^{S} d$

Stress Measures (continued)

Second Piola-Kirchhoff Stress Tensor

K^S£\$vL'^Sd ` '^S≪

$$\underset{s}{\overset{U}{m}} \cdot \frac{c}{c} \underset{s}{\overset{U}{n}} 4 \text{ i } \underset{s}{\overset{U}{m}} \cdot \underset{s}{\overset{W}{m}} \cdot \underset{c}{\overset{S}{n}} \frac{c}{c} \underset{c}{\overset{U}{n}} 6$$

$$\mathbf{S} = J \mathbf{F}^{-1} \cdot \boldsymbol{\sigma} \cdot \mathbf{F}^{-\mathrm{T}}$$

$$\mathbf{F} = \frac{\partial ({}^{2} \mathbf{x})}{\partial ({}^{0} \mathbf{x})} \quad \left(= \frac{\partial \mathbf{x}}{\partial \mathbf{X}}\right), \text{ Deformation gradient tensor}$$

DESCRIPTION OF MOTION

- **Motion:** $K_{T}^{(1)} = K_{T}^{(1)} + K_{T$
- Notation: $\[mathbb{P}]\[mathbb{P}\[mathbb{P}]\[mathbb{P}]\[mathbb{P}]\[mathbb{P}]\[mathbb{P}]\[mathbb{P}\[mathbb{P}]\[mathbb{P}\[mathbb{P}]\[mathbb{P}\[mathbb{P}]\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[mathbb{P}\[$

Various Strain Components

Displacements: T ... ` T # S $\P_{,,,}$ T ...fi ` T fi # S fiU... ` U # S $\P_{,,,}$ U...fi ` U fi # S fi... ` U... # T ... $\P_{,,,...fi}$ ` U...fi # T ...fi

Green-Lagrange Strain Tensor

$$\begin{split} & \mathsf{K}^{\mathsf{S}} \cdot {}''\mathsf{L}^{\mathsf{U}} \, \cdot \, {}^{\mathsf{S}} \, \mathring{}^{\mathsf{S}} \, \mathring{}^{\mathsf{S}} \, \check{}^{\mathsf{S}} \, \check{}^{\mathsf{S}} \, \check{}^{\mathsf{fi}} \, \check{}^{\mathsf{F$$

$$\begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{f} \\ \mathbf{f} \end{array} \\ \mathbf{f} \\$$

Continuum Formulations 15

Strain Measures (continued)

Green-Lagrange Strain Tensor

$${}^{T}_{s}h_{ffl} \cdot \frac{T}{U} {}^{5} \frac{c}{c} {}^{T}_{\cdots fi} N \frac{c}{c} {}^{T}_{\cdots fl} N \frac{c}{c} {}^{T}_{\cdots fl} N \frac{c}{c} {}^{T}_{\cdots fl} \frac{c}{c} {}^{T}_{\cdots fl}$$

Green-Lagrange Incremental Strain Tensor

$$\begin{array}{c} U_{s}E_{fil} & \stackrel{s}{\underset{fi}{}} & \stackrel{s}{\underset{fi}{} & \stackrel{s}{\underset{fi}{}} & \stackrel{s}{\underset{fi}{}} & \stackrel{s}{\underset{fi}{}} & \stackrel{s}{\underset{fi}{} & \stackrel{s}{\underset{fi}{}} & \stackrel{s}{\underset{fi}{} & \stackrel{s}{\underset{fi}{}$$

Linear Green-Lagrange Incremental Strain Tensor

s "fil '
$$\frac{T}{U} = \frac{C...fi}{c^{s}fi} N \frac{C...fi}{c^{s}fi} N \frac{C...fi}{c^{s}fi} \frac{C...}{c^{s}fi} \frac{C...}{c$$

Continuum Formulations 16

Strain Measures (continued)

Nonlinear Green-Lagrange Incremental StrainTensor

$$_{s}4_{ffl}$$
 ' $\frac{T}{U} \frac{C...}{c^{s}_{fi}} \frac{C...}{c^{s}_{fl}}$

Infinitesimal Green-Lagrange Incremental Strain Tensor

"fil '
$$\frac{T}{U}^{5} \frac{C...fi}{c^{s}fl} N \frac{C...fl}{c^{s}fl}$$

Updated Green-Lagrange Strain (increment) Tensor

CONSERVATION OF MASS AND CONSTITUTIVE RELATIONS

<u>Conservation of Mass</u> $S = V U = U_S m, T = V U = U_T m$

Constitutive Relations

 $_{T}v_{fil}$ ' $_{T}f_{fil-Y} TE_{Y}$ $_{S}v_{fil}$ ' $_{S}f_{fil-Y} E_{Y}$

$${}_{S}f_{ffl-\frac{Y}{2}} \stackrel{}{}^{}_{T} = \frac{C^{S}_{fi}}{C^{T}} \frac{C^{S}_{fl}}{C^{T}} \frac{C^{S}_{-}}{C^{T}} \frac{C^{S}_{\frac{Y}{2}}}{C^{T}} T^{f}_{0} \frac{C^{S}_{-}}{C^{T}} \frac{C^{S}_{\frac{Y}{2}}}{C^{T}} T^{f}_{0} T^{f}_{0} \frac{C^{T}_{-}}{C^{T}} \frac{C^{T}_{-}}{C^{T}} \frac{C^{T}_{-}}{C^{S}_{-}} \frac{C$$

Continuum Formulations 18

Virtual Work Statements

General Virtual Work Statement (in configuration 2 to be determined)

Infinitesimal Green-Lagrange incremental strain tensor components

$$_{2}e_{ij} = \frac{1}{2} \left(\frac{\partial u_{i}}{\partial^{2}x_{j}} + \frac{\partial u_{j}}{\partial^{2}x_{i}} \right)$$

Continuum Shell Element

<u>Virtual Work Statement for the</u> *Total Lagrangian Formulation*

Write various integrals over configuration 2 as equivalent integrals over the reference configuration

^U_Sv_{ffl} 1K^U_Sh_{ffl}L'^Sy # 1K^U_SuL' S

JN Reddy

Continuum Formulations 20

Total Lagrangian Formulation

1. Virtual Work Statement:

$$\int_{S} U_{S} v_{ffl} 1K_{S}^{U}h_{ffl}L \cdot S = 1K_{S}^{U}uL \cdot S$$

$$\int_{S} V_{ffl} \cdot \frac{1}{S}h_{ffl}L \cdot V_{S} = 1K_{S}^{U}uL \cdot S$$

$$\int_{S} V_{ffl} \cdot \frac{1}{S}h_{ffl}L \cdot V_{S} = 1K_{S}^{U}uL \cdot S$$

$$\int_{S} V_{ffl} \cdot V_{S} = 1K_{S}^{U}uL \cdot S$$

2. Incremental Decompositions:

$$\begin{array}{c} \overset{U}{s} v_{ff1} ` \overset{T}{s} v_{ff1} N \ s v_{ff1}, \overset{T}{s} v_{ff1} ` \overset{S}{s} t_{ff1} ` \overset{S}{s} t_{ff1} ~ \overset{S}{s} t_{ff1} ~ \overset{S}{s} v_{ff1} ` \overset{S}{s} t_{ff1} + \overset{S}{s} \overset{S}{s} \overset{S}{t}_{ff1} N \ s t_{ff1} \\ \overset{U}{s} h_{ff1} ` \overset{T}{s} h_{ff1} N \ s \overset{E}{s} \overset{T}{t_{f1}} N \ s \overset{G}{s} \overset{T}{$$

Total Lagrangian Formulation (continued)

3. Virtual Work Statement with Incremental Decompositions:

$$\delta\binom{2}{0}E_{ij} = \delta\binom{1}{0}E_{ij} + \delta\binom{1}{0}\varepsilon_{ij} = \delta\binom{1}{0}\varepsilon_{ij}, \quad \delta\binom{1}{0}\varepsilon_{ij} = \delta\binom{1}{0}e_{ij} + \delta\binom{1}{0}\eta_{ij}$$

$$S^{V_{\text{ffl}}} \stackrel{1}{} \stackrel{1}{} \stackrel{K_{\text{S}}} \stackrel{E_{\text{ffl}}}{} \stackrel{1}{} \stackrel{\Gamma}{} \stackrel{S}{} \stackrel{Y}{} \stackrel{N}{} \stackrel{S}{} \stackrel{T}{} \stackrel{V_{\text{ffl}}} \stackrel{1}{} \stackrel{1}{} \stackrel{K_{\text{S}}} \stackrel{4}{} \stackrel{I}{} \stackrel{I}{} \stackrel{K_{\text{S}}} \stackrel{H}{} \stackrel{I}{} \stackrel{K_{\text{S}}} \stackrel{K_{\text{ffl}}}{} \stackrel{1}{} \stackrel{K_{\text{S}}} \stackrel{K_{\text{ffl}}}{} \stackrel{1}{} \stackrel{K_{\text{S}}} \stackrel{K_{\text{ffl}}}{} \stackrel{I}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{ffl}}} \stackrel{I}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{ffl}}}{} \stackrel{I}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{ffl}}}{} \stackrel{I}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{ffl}}}{} \stackrel{K_{\text{S}}}{} \stackrel{K_{\text{S}}}{$$

4. Linearized Virtual Work Statement with Incremental Decompositions:

FINITE ELEMENT MODEL OF THE TOTAL LAGRANGIAN FORMULATION

$$\begin{array}{c} \overset{S}{\overset{T}} & \overset{S}{\overset{U}} & \overset{T}{\overset{T}} & \overset{T}{\overset{T}} & \overset{T}{\overset{T}} & \overset{T}{\overset{U}} & \overset{T}{\overset{T}} & \overset{T}{\overset{U}} & \overset{T}{\overset{T}} & \overset{T}{\overset{U}} & \overset{T}{\overset{T}} & \overset{T}{}} & \overset{T}{\overset{T}} & \overset{T}{\overset{T}} & \overset{T}{\overset{T}} & \overset{T}{}} & \overset{T}{} & \overset{T}{\overset{T}}{\overset{T}} & \overset{T}{} & \overset{T}}{} & \overset{T}{} & \overset{T}{}} & \overset{T}{} & \overset{T}{}$$

J N Reddy

J N Reddy

≪l_s "<" ~sf ≪s "< ′ ^sy sY - ۲ ' «1.9.<" Kg ¢N ~g ... \mathfrak{T}^{w} ~sf ¢Kg ¢N ~g ... \mathfrak{T}^{u} «9.< ' $^{\varepsilon}V$ ^sv

J N Reddy

Total Lagrangian Element

ELEMENT MODEL (continued)

sv $_{s4_{ffl}}$, $\frac{T}{UC}$, $\frac{C...}{C}$, $\frac{C...}{C}$ $\ll 1_S 4 <^w \ll^T_S v < '^S y$ $\begin{bmatrix} s \\ y \end{bmatrix} \begin{bmatrix} T \\ s \\ y \end{bmatrix} \begin{bmatrix} T \\ s \\ z \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \\ s \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ s \\ c \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} c \\ c \\ s \end{bmatrix}$ «1.٩<^w ، ٩ ؇ ~^Ty ¢٩ ¢«.٩< ' ^Sy

J N Reddy

J N Reddy

$$s^{s} s^{1} s^{w} \cdot s^{s} f \varphi_{s}^{w} \cdot s^{s} f \varphi_{s}^{w} \cdot s^{s} f \varphi_{s}^{w} + s^{$$

J N Reddy

J N Reddy

$$\begin{array}{c} \operatorname{Ken}_{\circ} \operatorname{c}^{\circ} \operatorname{N} \operatorname{en}_{q \circ} \operatorname{c}^{\circ} \operatorname{L}^{\circ} \operatorname{s}^{\circ} \operatorname{s}$$

J N Reddy

$$\begin{array}{c} \mathbf{e}_{o} \mathbf{\dot{\varsigma}}' & \mathbf{e}_{o}^{s} \mathbf{\dot{\varsigma}} \mathbf{N} & \mathbf{e}_{o}^{\cdots} \mathbf{\dot{\varsigma}} \mathbf{N} & \mathbf{e}_{o}^{s} \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}} \\ \\ \mathbf{u}_{c}^{c} \mathbf{C}_{T} & \mathbf{S}_{c}^{c} \mathbf{C}_{U} & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}} \mathbf{S} \\ \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}}' & \mathbf{S}_{c}^{c} \mathbf{C}_{T} & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}} \mathbf{S} \\ \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}}_{c}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}} \mathbf{S} \\ \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}}_{c}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}} \mathbf{S} \\ \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}}_{c}' & \mathbf{S}_{c}^{c} \mathbf{\dot{\varsigma}} \mathbf{S} \\ \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}} \mathbf{\dot{\varsigma}}' & \mathbf{\dot{\varsigma}} \mathbf{\dot$$

J N Reddy

J N Reddy

Total Lagrangian Element

32

$$\begin{array}{c} \begin{array}{c} & \text{FINITE ELEMENT MODEL (continued)} \\ & \text{The characterization of the second se$$

Transverse deflection, v

J N Reddy

NUMERICAL RESULTS

SHELL FINITE ELEMENTS

Degenerate Continuum Shell Elements

It is obtained by a degeneration process from the 3D continuum equations. Less expensive than the solid element but more expensive than the shell-theory element. Also exhibit locking problems.

Shell Theory Elements

Based on a curvilinear description of the continuum using an specific shell theory. Analytical integration of energy terms over the thickness. Also exhibit locking problems.

CONTINUUM SHELL ELEMENTS

The degenerate continuum shell element approach was first developed by Ahmad et al. from a threedimensional solid element by a process which the 3D elasticity equations are expressed in terms of midsurface nodal variables. It uses displacements and rotational DOFs.

Assumptions are:

- 1. Fibers remain straight
- 2. The stress normal to the midsurface vanishes (the plane stress condition)

Discretization of the reference surface by using Cartesian coordinates

$$X_{i} = \sum_{k=1}^{n} \psi_{k}(\xi, \eta) \left[\frac{1+\zeta}{2} (X_{i}^{k})_{\text{TOP}} + \frac{1-\zeta}{2} (X_{i}^{k})_{\text{BOTTOM}} \right]$$

where

 $\psi_k(\xi,\eta)$: Lagrangian interpolation functions (ξ,η,ζ) : Natural coordinates

CONTINUUM SHELL ELEMENTS

$$x_{i} = \sum_{k=1}^{n} \psi_{k}(\xi, \eta) \left[\frac{1+\zeta}{2} (x_{i}^{k})_{\text{TOP}} + \frac{1-\zeta}{2} (x_{i}^{k})_{\text{BOTTOM}} \right]$$

Discretization of the final configuration of the reference surface

Equivalent to the discretization of the displacement of the reference surface as

$$u_i = \sum_{k=1}^n \psi_k(\xi,\eta) \left[u_i^k + \frac{\zeta}{2} h_k\left(e_{3i}^k\right) \right]$$

Continuum Shell Element (continued)

Virtual Work Statement for the Dynamic Case

$$\begin{cases} & & \\ & S = N^{S} = IK^{S} = IK^{S$$

Finite Element Model

$$\sum_{fi} \left\{ \begin{array}{c} \left\{ \begin{array}{c} C_{-} & S_{-} & S_{-$$

J N Reddy

J N Reddy

Continuum Shell Element

42

J N Reddy

J N Reddy

POSTBUCKLING AND FAILURE ANALYSIS

- Nonlinear FE analysis
- Comparison with experimental results of Starnes and Rouse
- Progressive failure analysis

a = 50.8 cm (20 in.), b = 17.8 cm (7 in.), $h_k = 0.14 \text{ mm} (0.0055 \text{ in.})$

24-ply laminate: $[45/-45/0_2/45/-45/0_2/45/-45/0/90]_s$

 $E_1 = 131$ Gpa (19,000 ksi), $E_2 = 13$ Gpa (1,890 ksi),

$$G_{12} = 6.4 \text{ Gpa} (930 \text{ ksi}), v_{12} = 0.38$$

(graphite-epoxy)

J N Reddy

Continuum Shell Element⁴⁶

Experimental Setup and Failure Region (Starnes & Rouse, NASA Langley)

(a) Typical panel with test fixture

(b) A transverse shear failure mode

Continuum Shell Element 47

POST-BUCKLING OF A COMPOSITE PANEL UNDER IN-PLANE LOADING

Finite Element Models

- Mesh has six elements per buckling mode half wave in each direction
- Elements used:
 - (1) Four-node C^1 -based flat shell element (**STAGS**)
 - (2) Nine-node continuum shell element (Chao & Reddy)
 - (3) For-node and nine-node ANS shell elements (**Park & Stanley**)
- All meshes have 72 elements (91 nodes for the meshes with four-node elements and 325 nodes

for meshes with nine-node elements). Continuum Shell Element 48

Comparison of the Experimental (Moire) and Analytical Out-of-Plane Deflection Patterns

Continuum Shell Element49

Comparison of the Experimental and Analytical Solutions for End Shortening

Continuum Shell Element 50

Postbuckling of a Composite Panel

Postbuckling of a Composite Panel (Stress Distributions)

J N Reddy

<u>Postbuckling of a Composite Panel</u> (<u>Stress Distributions</u>)

J N Reddy

Summary

- Introduction to nonlinear continuum mechanics
- Descriptions of motion
- Measures of stresses and strains
- Updated and Total Lagrangian formulations
- Continuum shell element
- Post-buckling of composite panels