MEEN 673: NONLINEAR FINITE ELEMENT ANALYSIS

Time-Dependent Problems

CONTENTS

Transient problems
- Semi-discretization
- Time approximations
- Mass lumping
- Stability and accuracy
- Computer implementation
- Numerical examples
INTRODUCTION

Equations of motion

Static problem
(set all derivatives with respect to time t to zero)

Construct weak form
Construct FE model

Eigenvalue problem
(replace the solution with periodic or decay type solution with respect to time t)

Semidiscretization
(construct weak form in spatial coordinates and semi-discrete FEM)

Construct weak form
Construct FE model

Full discretization
(use time approximations)
INTRODUCTION (continued)

Equilibrium (static) problem

Equilibrium configuration

\[- \frac{d}{dx} \left(T \frac{du}{dx} \right) = f(x)\]
\[u(0) = 0, \quad u(L) = 0\]

Transient problem

Transient configurations

\[\frac{\partial}{\partial t} \left(\rho \frac{\partial u}{\partial t} \right) - \frac{\partial}{\partial x} \left(T \frac{\partial u}{\partial x} \right) = f(x, t)\]
\[B.C. : \quad u(0, t) = 0, \quad u(L, t) = 0\]
\[I.C. : \quad u(x, 0) = u_0(x), \quad \dot{u}(x, 0) = v_0(x)\]

Eigenvalue and Dynamics Problems: 3
TRANSIENT ANALYSIS
(steps involved)

Model Equation

\[
c_1 \frac{\partial u}{\partial t} + c_2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(a(x,u) \frac{\partial u}{\partial x} \right) + \frac{\partial^2}{\partial x^2} \left(b(x,u) \frac{\partial^2 u}{\partial x^2} \right) = f(x,t)
\]

Approximate solution

\[
u(x,t) \approx u_h(x,t) = \sum_{j=1}^{n} \Delta_j(t) \varphi_j(x)
\]

1. Spatial approximation (semidiscretization)

\[
C \ddot{\Delta} + M \dot{\Delta} + K(\Delta)\Delta = F
\]

2. Time approximation (full discretization)

\[
\hat{K}(\Delta_s, \Delta_{s+1}) \Delta_{s+1} = F_{s,s+1}
\]
SPATIAL APPROXIMATION

Model Equation

\[c_1 \frac{\partial u}{\partial t} + c_2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(a \frac{\partial u}{\partial x} \right) + \frac{\partial^2}{\partial x^2} \left(b \frac{\partial^2 u}{\partial x^2} \right) = f(x,t) \]

Weak Form for semi-discretization

\[0 = \int_{x_a}^{x_b} w_i(x) \left[c_1 \frac{\partial u_h}{\partial t} + c_2 \frac{\partial^2 u_h}{\partial t^2} - \frac{\partial}{\partial x} \left(a \frac{\partial u_h}{\partial x} \right) + \frac{\partial^2}{\partial x^2} \left(b \frac{\partial^2 u_h}{\partial x^2} \right) - f(x,t) \right] dx \]

\[= \int_{x_a}^{x_b} \left[c_1 w_i \frac{\partial u_h}{\partial t} + c_2 w_i \frac{\partial^2 u_h}{\partial t^2} + \frac{d w_i}{dx} \left(a \frac{\partial u_h}{\partial x} \right) + \frac{d^2 w_i}{dx^2} \left(b \frac{\partial^2 u_h}{\partial x^2} \right) - w_i f(x,t) \right] dx \]

\[- w_i(x_a) Q_1 - w_i(x_b) Q_3 - \left(- \frac{d w_i}{dx} \right)_{x_a} Q_2 - \left(- \frac{d w_i}{dx} \right)_{x_b} Q_4 \]

Eigenvalue and Dynamics Problems: 5
SPATIAL DISCRETIZATION

Finite Element Model

Approximation

\[u(x,t) \approx u_h(x,t) = \sum_{j=1}^{n} \Delta_j(t) \varphi_j(x) \]

Finite element model

\[
\begin{align*}
C \dot{\Delta} + M \ddot{\Delta} + K \Delta &= F \\
C_{ij}^e &= \int_{x_a}^{x_b} c_{ij} \varphi_i \varphi_j \, dx, \quad M_{ij}^e = \int_{x_a}^{x_b} c_{ij} \dot{\varphi}_i \dot{\varphi}_j \, dx \\
K_{ij}^e &= \int_{x_a}^{x_b} \left(b \frac{d^2 \varphi_i}{dx^2} \frac{d^2 \varphi_j}{dx^2} + a \frac{d \varphi_i}{dx} \frac{d \varphi_j}{dx} \right) \, dx \\
F_i^e &= \int_{x_a}^{x_b} f \varphi_i \, dx + \varphi_i(x_a)Q_1 + \varphi_i(x_b)Q_3 + \left(- \frac{d \varphi_i}{dx}\right)_{x_a}Q_2 + \left(- \frac{d \varphi_i}{dx}\right)_{x_b}Q_4
\end{align*}
\]
TIME APPROXIMATIONS

PARABOLIC EQUATION (heat transfer, fluid mechanics, and like problems)

\[C \dot{u} + K(u)u = F \]

\[C_{ij}^e = \int_{x_a}^{x_b} c_1 \psi_i \psi_j \, dx, \quad K_{ij}^e = \int_{x_a}^{x_b} \left(a(x,u,u_x) \frac{d\psi_i}{dx} \frac{d\psi_j}{dx} \right) \, dx \]

\[F_i^e = \int_{x_a}^{x_b} f \psi_i \, dx + \psi_i(x_a)Q_1 + \psi_i(x_b)Q_2 \]

HYPERBOLIC EQUATION (structural mechanics problems)

\[C \ddot{\Delta} + M \ddot{\Delta} + K(\Delta)\Delta = F \]

Eigenvalue and Dynamics Problems: 7
TIME APPROXIMATIONS OF PARABOLIC EQUATIONS

Approximation of the first derivative

\[\dot{u}_j^s \approx \frac{u_j^{s+1} - u_j^s}{\Delta t_{s+1}} \], forward difference
\[\dot{u}_j^{s+1} \approx \frac{u_j^{s+1} - u_j^s}{\Delta t_{s+1}} \], backward difference

Alfa (\(\alpha\))-family of approximation

\[\alpha \dot{u}_j^{s+1} + (1 - \alpha)\dot{u}_j^s \approx \frac{u_j^{s+1} - u_j^s}{\Delta t_{s+1}}, \quad 0 \leq \alpha \leq 1 \]
\[u_j^{s+1} = u_j^s + \Delta t_{s+1} \left[\alpha \dot{u}_j^{s+1} + (1 - \alpha)\dot{u}_j^s \right] \]
TIME APPROXIMATIONS (Parabolic)

Alfa-family of approximation (Parabolic equation)

\[C\dot{u} + K(u)u = F, \quad 0 < t < T \]

\[\Rightarrow C\dot{u}^s + K(u)^s = F^s, \quad C\dot{u}^{s+1} + K(u)^{s+1} = F^{s+1} \]

\[u^{s+1} = u^s + \Delta t^{s+1} \left[\alpha \dot{u}^{s+1} + (1 - \alpha)\dot{u}^s \right] \]

\[C\dot{u}^{s+1} = C\dot{u}^s + \Delta t^{s+1} \left[\alpha C\dot{u}^{s+1} + (1 - \alpha)C\dot{u}^s \right] \]

\[C\dot{u}^{s+1} = F^{s+1} - K^{s+1}u^{s+1} \quad (\text{where}) \]

\[\dot{K}^{s+1} = \frac{\Delta t^{s+1}}{1 - \alpha} K^{s+1} + C \]

\[\hat{F}^{s+1} = [(1 - \alpha)\Delta t^{s+1} K^{s+1} + C]u^s + \Delta t^{s+1} \left[\alpha \hat{F}^{s+1} + (1 - \alpha)F^s \right] \]
TIME APPROXIMATIONS (Hyperbolic)

Semidiscrete FE model

\[C^e \ddot{u}^e + M^e \dot{u}^e + K^e(u^e)u^e = F^e \]

Newmark scheme (hyperbolic equations)

\[u^{s+1} = u^s + \Delta t \dot{u}^s + \frac{1}{2}(\Delta t)^2 \ddot{u}^{s,\gamma} \]

\[\dot{u}^{s+1} = \dot{u}^s + \Delta t \ddot{u}^{s,\alpha}, \quad \dddot{u}^{s,\theta} \equiv (1 - \theta)\dot{u}^s + \theta \ddot{u}^{s+1} \]

Fully discretized model

\[\hat{K}_{s+1} u^{s+1} = \hat{F}^{s+1}, \quad \hat{K}_{s+1} = K_{s+1} + a_3 M_{s+1} + a_5 C_{s+1} \]

\[\hat{F}^{s+1} = F^{s+1} + M_{s+1} \left(a_3 u^s + a_4 \dot{u}^s + a_5 \ddot{u}^s \right) + C_{s+1} \left(a_3 u^s + a_6 \dot{u}^s + a_7 \dddot{u}^s \right) \]

Transient Problems: 10
General form of the time-marching scheme

\[\hat{K}u^{s+1} = Bu^s + F^{s,s+1} \]

The scheme is called *explicit* if the coefficient matrix \(\hat{K} \) is diagonal (and hence, no inversion of equations is necessary); otherwise, the scheme is said to be implicit.

\[\hat{K}^{s+1} u^{s+1} = F^{s+1} \]

\[\hat{K}^{s+1} = \alpha \Delta t_{s+1} K_{s+1} + C, \quad \hat{F}^{s+1} = \left[(1 - \alpha) \Delta t_{s+1} K_{s+1} + C \right] u^s + \Delta t_{s+1} \left[\alpha F^{s+1} + (1 - \alpha) F^s \right] \]

The alfa-family scheme is *explicit* if and only if

(1) \(\alpha = 0 \) and (2) \(C \) is diagonal.
ROW-SUM MASS LUMPING

For the Lagrange linear and quadratic elements we have

\[
[M^e]_C = \frac{\rho A_e h_e}{6} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}, \quad [M^e]_C = \frac{\rho A_e h_e}{30} \begin{bmatrix} 4 & 2 & -1 \\ 2 & 16 & 2 \\ -1 & 2 & 4 \end{bmatrix}
\]

\[
[M^e]_L = \frac{\rho A_e h_e}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad [M^e]_L = \frac{\rho A_e h_e}{6} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
STABILITY OF APPROXIMATIONS

\[\hat{K}^{s+1}u^{s+1} = \bar{K}u^s + F^{s,s+1} \]
\[u^{s+1} = Au^s + B^{s,s+1} \]

The scheme is called **stable** if the repeated solution of the above equation does not result in unbounded solution \(u_{s+1} \). The necessary and sufficient condition for the above scheme to be stable is that the maximum eigenvalue of the coefficient matrix \(A \) is less than unity:

\[\lambda_{\text{max}}^A \leq 1 \]
STABILITY OF APPROXIMATIONS
(continued)

Alfa-family of approximation scheme

\[\alpha \geq \frac{1}{2}, \quad \text{the scheme is stable} \]
\[\alpha < \frac{1}{2}, \quad \text{the scheme is conditionally stable} \]

\[
\begin{array}{c}
\alpha = 0.0, \text{ Forward difference (Euler) scheme (conditionally stable)} \\
\alpha = 0.5, \text{ Crank-Nicolson's scheme (stable)} \\
\alpha = \frac{2}{3}, \text{ Galerkin's scheme (stable)} \\
\alpha = 1.0, \text{ Backward difference scheme (stable)} \\
\end{array}
\]

Stability condition:

\[
\Delta t \leq (\Delta t)_{\text{crit}} = \frac{2}{(1 - 2\alpha)\lambda_{\text{max}}}.
\]
STABILITY OF APPROXIMATIONS
(continued)

Newmark’s scheme for Structural Dynamics

\[(-\lambda M + K) u = 0 \]

Stability condition: \(\Delta t \leq (\Delta t)_{\text{crit}} = \frac{2}{(\alpha - \gamma)\lambda_{\text{max}}} \)

\(\alpha = 0.5, \gamma = 2\beta = 0.5, \) Constant-average acceleration scheme (stable)
\(\alpha = 0.5, \gamma = 2\beta = \frac{1}{3}, \) Linear acceleration scheme (conditionally stable)
\(\alpha = 1.5, \gamma = 2\beta = 1.6, \) Galerkin's scheme (stable)
\(\alpha = 1.5, \gamma = 2\beta = 2.0, \) Backward difference scheme (stable)

(\(\Delta t \)\)\textsubscript{crit} gets smaller as the mesh is refined.

Transient Problems: 15
Load loop
DO NL = 1, NLOAD
F = F + DF

Time loop
DO NT = 1, NTIME

ITER = 0

ITER = ITER + 1

Initialize global K_{ij}, M_{ij}, and f_i

DO $N = 1$ to NEM

Transfer global information (material properties, geometry and solution) to element

CALL ELKMF to calculate $K_{ij}^{(e)}$, $M_{ij}^{(e)}$, and $f_i^{(e)}$, and assemble to form global K_{ij}, M_{ij}, and F_i

Impose boundary conditions and solve the equations

error < ε

yes

no

yes

iter < itmax

no

Update velocities, accelerations, and print solution

Write a message

STOP

IF $NT > NTIME$

no

yes
Read the necessary data for time-dependent problems

IF(ITEM.NE.0) THEN
 READ(IN,*) C0,CX,CY
 WRITE(ITT,820)
 WRITE(ITT,540) C0,CX,CY
 READ(IN,*) NTIME
 READ(IN,*) DT,ALFA,GAMA,EPSLN
 A1=ALFA*DT
 A2=(1.0-ALFA)*DT
 DO 40 I=1,NEQ
 GLU(I)=0.0
 40

 IF(ITEM.EQ.1) THEN
 IF(NSSV.NE.0) THEN
 DO 50 I=1,NSSV
 VSSV(I)=VSSV(I)*DT
 50
 ENDIF
 ELSE
 DT2=DT*DT
 A3=2.0/GAMA/DT2
 A4=A3*DT
 A5=1.0/GAMA-1.0

 C ***It is assumed that the initial conditions are all zero***
 DO 70 I=1,NEQ
 GLV(I)=0.0
 GLA(I)=0.0
 70
 ENDIF
 ENDIF

 C ***Initialize the arrays***

 DO 250 N=1,NEM
 DO 200 I=1,NPE
 NI=NOD(N,I)
 IF(NONLIN.GT.0 .OR. ITEM.GT.0) THEN
 ELU(I)=GLU(NI) !Transfer of the current solution
 ELU0(I)=GLP(NI) !Transfer of the previous time step solution
 ENDIF
 IF(ITEM.EQ.2) THEN
 ELU1(I)=GLV(NI) !Transfer of the previous first time derivative
 ELU2(I)=GLA(NI) !Transfer of the previous second time derivative
 ENDIF
 ELXY(I,1)=GLXY(NI,1)
 ELXY(I,2)=GLXY(NI,2)
 200
 250

 Call Subroutine ELMATRCS2D to compute ELK, ELK-HAT, etc.
 and assemble them into global matrices GLK

SUBROUTINE ELMATRCS2D(MODEL,NPE,NN,NONLIN)
C __
C Element calculations based on linear and quadratic rectangular
elements with isoparametric formulation.
C __
IMPLICIT REAL*8(A-H,O-Z)
COMMON/STF/ELF(9),ELK(9,9),ELXY(9,2),ELU(9)
COMMON/PST/A10,A1X,A1Y,A20,A2X,A2Y,A00,F0,FX,FY,
COMMON/SHP/SFL(9),GDSFL(2,9)
COMMON/PNT/IPDF,IPDR,NIPF,NIPR
DIMENSION GAUSPT(5,5),GAUSWT(5,5),TANG(9,9)
COMMON/IO/IN,IT
C
C DATA GAUSPT/5*0.0D0, −0.57735027D0, 0.57735027D0, 3*0.0D0,
C 2 −0.77459667D0, 0.0D0, 0.77459667D0, 2*0.0D0, −0.86113631D0,
C 3 −0.33998104D0, 0.33998104D0, 0.86113631D0, 0.0D0, −0.90617984D0,
C 4 −0.53846931D0,0.0D0,0.53846931D0,0.90617984D0/
C DATA GAUSWT/2.0D0, 4*0.0D0, 2*1.0D0, 3*0.0D0, 0.55555555D0,
C 2 0.88888888D0, 0.55555555D0, 2*0.0D0, 0.34785485D0,
C 3 2*0.65214515D0, 0.34785485D0, 0.0D0, 0.23692688D0,
C 4 0.47862867D0, 0.56888888D0, 0.47862867D0, 0.23692688D0/
C NDF=NN/NPE
C Initialize the arrays
C DO 100 I = 1,NPE
 ELF(I) = 0.0
DO 100 J = 1,NPE
 IF(NONLIN.GT.1)THEN
 TANG(I,J)=0.0
 ENDIF
100 ELK(I,J)= 0.0
C Do-loops on numerical (Gauss) integration begin here.
C DO 200 NI = 1,IPDF
DO 200 NJ = 1,IPDF
 XI = GAUSPT(NI,IPDF)
 ETA = GAUSPT(NJ,IPDF)
 CALL INTERPLN2D(NPE,XI,ETA,DET,ELXY)
 CNST = DET*GAUSWT(NI,IPDF)*GAUSWT(NJ,IPDF)
 X=0.0
 Y=0.0
DO 120 I=1,NPE
 X=X+ELXY(I,1)*SFL(I)
120 Y=Y+ELXY(I,2)*SFL(I)
IF(MODEL.EQ.1) THEN
C Define the coefficients of the differential equation
C
AXX=A10+A1X*X+A1Y*Y
AYY=A20+A2X*X+A2Y*Y
FXY=F0+FX*X+FY*Y
C
IF(NONLIN.GT.0) THEN
U=0.0
DO 140 I = 1, NPE
U = U + ELU(I) * SFL(I)
140 CONTINUE
AXX = AXX + A1U*U + A1UX*UX + A1UY*UY
AYY = AYY + A2U*U + A2UX*UX + A2UY*UY
ENDIF
C
DO 180 I = 1, NPE
ELF(I) = ELF(I) + FXY * SFL(I) * CNST
DO 160 J = 1, NPE
S00 = SFL(I) * SFL(J) * CNST
S11 = GDSFL(1, I) * GDSFL(1, J) * CNST
S22 = GDSFL(2, I) * GDSFL(2, J) * CNST
S12 = GDSFL(1, I) * GDSFL(2, J) * CNST
S21 = GDSFL(2, I) * GDSFL(1, J) * CNST
ELK(I, J) = ELK(I, J) + AXX * S11 + AYY * S22 + A00 * S00
C Write statements here for the part needed to be added to K to obtain T
C
160 CONTINUE
180 CONTINUE
ENDIF
200 CONTINUE
C
C Write statements here to compute the residual vector and tangent matrix
C
RETURN
END
DO 200 NI = 1, NGPF ! full Gauss integration loop
DO 200 NJ = 1, NGPF

C Define the linear and nonlinear coefficients of the differential equation
C

IF(ITEM.GT.0)THEN
 CXY = C0 + CX*X + CY*Y ! Define the coefficient of the time derivative
 ENDIF
C
C IF(ITEM.GT.0)THEN ! Define the solution vector \mathbf{u}_s and its derivatives
 UP = 0.0
 UPX = 0.0
 UPY = 0.0
 DO 140 I=1,NPE
 UP = UP + ELU0(I)*SF(I)
 UPX = UPX + ELU0(I)*GDSF(1,I)
 140 UPY = UPY + ELU0(I)*GDSF(2,I)
 APXX = A11 + A1U*UP + A1UX*UPX + A1UY*UPY
 APYY = A22 + A2U*UP + A2UX*UPX + A2UY*UPY
 ENDIF
C
C Define the element coefficient matrices ELK, ELF, and ELM
C
C IF(ITEM.GT.0)THEN
 ELM(I,J) = ELM(I,J) + CXY*S00
 IF(NONLIN.GT.0)THEN ! Define \mathbf{K} ($a_{xx} = a_{yy} = 0$)
 ELK0(I,J) = ELK0(I,J) + APXX*SXX + APYY*SYY + A00*S00
 ENDIF
 ENDIF
C
200 CONTINUE
C
C Compute $\hat{\mathbf{K}}_{s+1}$ and $\hat{\mathbf{F}}$
C
IF(ITEM.EQ.1) THEN ! for parabolic equations
 DO 220 I=1,NN
 SUM = 0.0
 DO 210 J=1,NN
 IF(NONLIN.GT.0)THEN
 SUM = SUM + ((ELM(I,J) - A2*ELK0(I,J)) * ELU0(J))
 ELSE
 SUM = SUM + (ELM(I,J) - A2*ELK(I,J)) * ELU0(J)
 ENDIF
 210 ELK(I,J) = ELM(I,J) + A2*ELK(I,J)
 220 ELF(I) = (A1 + A2)*ELF(I) + SUM
 ENDIF
IF(ITEM.GT.1) THEN ! for hyperbolic equations
 DO 270 I = 1,NN
 SUM = 0.0
 DO 260 J = 1,NN
 SUM = SUM + ELM(I,J) * (A3*ELU0(J) + A4*ELU1(J) + A5*ELU2(J))
 260 ELK(I,J) = ELK(I,J) + A3*ELM(I,J)
 270 ELF(I) = ELF(I) + SUM
 ENDIF
NUMERICAL EXAMPLES

Heat transfer in a rod

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < x < 1$$

$$u(0, t) = 0, \quad \frac{\partial u}{\partial x}(1, t) = 0$$

$$u(x, 0) = 1$$

one-element model:

$$\Delta t_{\text{crit}} = \frac{2}{3} = 0.66667$$

two-element model:

$$\Delta t_{\text{crit}} = \frac{2}{31.689} = 0.063$$

Eigenvalue and Dynamics Problems: 21
NUMERICAL EXAMPLES
(continued)

Bending of a clamped beam

\[\frac{\partial^2 w}{\partial t^2} + \frac{\partial^4 w}{\partial x^4} = 0, \quad 0 < x < 1 \]

\[w(0, t) = 0, \quad \frac{\partial w}{\partial x}(0, t) = 0, \]

\[w(1, t) = 0, \quad \frac{\partial w}{\partial x}(1, t) = 0 \]

\[w(x, 0) = \sin \pi x - \pi x(1 - x) \]

one-element model:

\[\Delta t_{\text{crit}} = \frac{12}{516.93} = 0.023214 \]

two-element model:

\[\Delta t_{\text{crit}} = 0.00897 \]

![Graph showing deflection over time for different time steps and gamma values](image)
NUMERICAL EXAMPLES
(continued)

Eigenvalue and Dynamics Problems:
23
Figure 5.7.3: Actual and computational domains of the transient heat transfer problem.

Figure 5.7.4: Transient response predicted by various schemes.