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THE PRINCIPLE OF VIRTUAL DISPLACEMENTS
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Application to 3D Linear Elasticity
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THE PRINCIPLE OF VIRTUAL DISPLACEMENTS

Application to Timoshenko Beams
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Displacement field and the von Karman nonlinear strains

Principle of virtual displacements
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THE PRINCIPLE OF VIRTUAL DISPLACEMENTS
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Simplifying, we obtain

Using the fundamental lemma, we obtain
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THE UNIT DUMMY DISPLACEMENT METHOD
The principle of virtual displacements can also be used, in addition to 
deriving equations of equilibrium, to directly determine reaction forces 
and displacements in structural problems. If      is the force at point O 
in a structure, we can prescribe a virtual displacement                  at the 
point and assume that the virtual displacements at all other points are 
zero. Then
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This is known as the unit dummy displacement method. 
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point where       is applied.0P
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THE UNIT DUMMY DISPLACEMENT METHOD
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Determine the horizontal and vertical deflections at point O using the 
unit dummy displacement method. Assume linear elastic behavior.

( ) ( ),

(1) (1) (1) (2) (2) (2)
1 2

(1) 2 2 (2) 2 2

(1) (2) (1) (2)

0
1 1( ) ( ) ( ) 2

22

, , ,
2 2

u P v L A L A
u u va u v a a u a v a

a a aa
u u v u u vE E
a a a a

d d s de s de

e e

d d d
s s de de

⋅ + ⋅ = +
−= + + − ≈ = + + − − ≈

− −= = = =

( )

(1) (2) (1) (2) (2)1 10 2
2 2 2

, 1 2 2

u u vu P v aA aA A u A v
a a

Pa Pau v
AE AE

d d d
d d s s s s d s d

−    ⋅ + ⋅ = + = + + −   
   

= = +

Example (1a)

Es e=

JN Reddy - 6 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS



(b)

O1

2 O
dv

du

THE UNIT DUMMY DISPLACEMENT METHOD

Example (1b)
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Determine the horizontal and vertical deflections at point O using the 
unit dummy displacement method. Assume nonlinear elastic behavior.
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First we must write the axial displacement u(x) and transverse deflection 
w(x) in terms of suitable quantities, called the generalized coordinates: 

These expansions are typically constructed using the exact solutions to the 
respective governing equations. Then we apply the unit dummy-
displacement method to determine the required generalized displacements 
in terms of the applied loads. 

THE UNIT DUMMY DISPLACEMENT METHOD
Beams
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where the horizontal and transverse distributed loads are converted into 
point loads using
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THE UNIT DUMMY DISPLACEMENT METHOD
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The method, for continuous systems, is close the finite element method.
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Example 2
Problem:  Determine the displacement u of 
point O of the spring supported bar. Assume 
linearly elastic behavior.
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The displacement u is expanded as (solution to                         )  Solution:
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Then the displacement at x = L is

Then                                     becomes (         )[ ]{ } { }K u F fu = + 0f =
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Example 3
Problem:  Determine the transverse displacement 
w of point O of the spring supported beam. Assume 
linearly elastic behavior and use the Euler-Bernoulli 
beam theory.
Solution:

THE UNIT DUMMY DISPLACEMENT METHOD
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The displacement w is expanded as (solution to                         )   4 4/ 0d w dx =
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Then                                becomes (         )[ ]{ } { }K Qw Δ = 0q =

THE UNIT DUMMY DISPLACEMENT METHOD
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CASTIGLIANO’S  THEOREM  I

0E EU V U Vd d d d dΠ = + =  = −

The principle of the minimum total potential energy
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Castigliano’s Theorem I

It is understood that the strain energy is a function of displacement 
parameters in order to apply Castigliano’s Theorem I. The unit dummy 
displacement method and Castigliano’s Theorem I are equivalent. 
Hence, the examples presented for trusses, bars, and beams are also 
valid here.
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CASTIGLIANO’S  THEOREM  I
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Example 4(a)
Problem:  Determine the displacements 
u and v of point O. Assume linearly 
elastic behavior.

The strains areSolution:

The strain energy is given by
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Prob (4b): Solve the problem for nonlinear elastic case [see Example 
1(b)].

JN Reddy - 13 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS



CASTIGLIANO’S  THEOREM  I
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Example 5
Problem:  Determine the displacement 
u of point O of the spring supported bar. 
Assume linearly elastic behavior.

The strain in the bar can be expressed as (an approximation)Solution:

The strain energy is given by
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Applying the Castigliano’s Theorem I, we obtain
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The principle of complementary virtual work (or virtual forces) states 
that the strains and displacements in a deformable body are compatible 
and consistent with the constraints if and only if the total 
complementary virtual work is zero:

PRINCIPLE OF VIRTUAL FORCES
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Unit Dummy Load Method

0
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Assuming virtual force         at a0Fd
point and zero virtual forces elsewhere, we can write 
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THE UNIT DUMMY FORCE METHOD

(b)

O

O
v

u

dPa

a

dQ

(c)
1 2

2

1

2

2

F Q F

F P

d d d

d d

= -

= -

O
Pd

1Fd

2Fd 45q = 
dQ

Determine the horizontal and vertical deflections at point O using the 
unit force method. Assume linear elastic behavior.

(1) (2), 2F P F P= = −

Problem statement

Solution Let us apply vertical and horizontal virtual forces 
shown in Fig. (b). Then the virtual forces in the members can be 
calculated using equilibrium as shown in Fig. (c). The actual 
forces in the members are (to calculate the actual strains)
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Then the unit dummy force method can be expressed as 
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THE UNIT DUMMY FORCE METHOD

By collecting the coefficients of                       , we obtain andu vd d
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The Principle of Minimum Complementary Energy

( )* * * * * *0  with E EU V U Vd dΠ ≡ + = Π ≡ +

where the complementary strain energy is expressed in terms of 
stresses/forces. For a 3D elastic body we have
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The Euler equations of this functional are
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CASTIGLIANO’S THEOREM II
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Thus, we have

This is known as the Castigliano’s Theorem II.

Example (7)

Consider the spring-supported beam shown in the figure. Determine 
(a) the compression in the linear elastic spring and 
(b) the reaction force and the rotation at x = L when the spring is 
replaced by a rigid support. Include the energy due to transverse 
shear force.

Problem statement
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CASTIGLIANO’S THEOREM II

Solution ,z w
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CASTIGLIANO’S THEOREM II

We have
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Note that, when (cantilevered beam with uniformly distributed 
load), we have
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When               (A beam fixed at the left end roller-supported at the other 
end and with uniformly distributed load), the reaction at the support is

k → ∞
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