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PREFACE

The objective of this book is to present for engineers and applied scientists the
basic mathematical concepts of vector and tensor analysis, the extension of
these concepts into abstract function spaces (functional analysis), and the
unification of these subjects with the variational calculus and associated
methods of numerical approximation. Vector and tensor analysis is fundamen-
tal to understanding and dealing with a vast range of physical problems and
disciplines, and is an indispensable tool for engineering analysis as a subject in
itself. In addition, the classical notion of vectors and tensors in Euclidean
space, with its physical applications, leads naturally to the modern abstract
notion of vectors in function spaces, and thus to the subject of functional
analysis. These abstract notions of vector and function spaces provide power-
ful new concepts and tools of analysis. In particular, they lend themselves
directly to approximation methods stemming from the calculus of variations.
The variational calculus in turn is related intimately to vector analysis in its
complementary representation and interpretation of physical phenomena. Thus
the three subjects of this book, vector and tensor analysis, functional analysis,
and variational calculus, are mutually related and form a fundamental founda-
tion for modern engineering analysis.

This book is the outgrowth of class notes which the authors have developed
and taught over a decade at four major universities. The book is intended for
undergraduate seniors and first-year graduate students in engineering and the
applied sciences. Senior standing in engineering or a course in differential
equations is a prerequisite for the understanding of the material in this book.
The subject matter should serve as text for a two quarter course, or a
one-semester course in any two of the three chapters on engineering analysis.

The text is divided into three parts: 1. Elements of Vector and Tensor
Analysis, 2. Elements of Functional Analysis, and 3. Calculus of Variations
and Variational Methods. Numerous examples, most of which are applications
of the concepts to problems in various fields of engineering, are provided
throughout the book. Many exercise problems are included to test and extend
the understanding of the subject matter. A number of these exercise problems
are intended to explore related ideas and applications of the concepts covered.

The conclusions of proofs and examples are indicated by the symbol M.
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viii Preface

There are several sections that can be skipped in a first reading of the book
(or, if required as prerequisite material, omitted in the syllabus of the course).
The material is intended for a semester or two quarter courses, although the
material is better suited for a two quarter sequence (Elements of Vectors and
Tensors at the undergraduate senior level and Elements of Functional Analysis
and Calculus of Variations and Variational Methods at the first-year graduate
level).

The authors wish to acknowledge with great pleasure and appreciation the
skillful typing of Mrs. Jo Ann Christina, Mrs. Rose Benda, Mrs. Marlene
Taylor, and Mrs. Vanessa McCoy.

J. N. REDDY
M. L. RASMUSSEN

Blacksburg, Virginia
Norman, Oklahoma
December 1981
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