PRINCIPLES OF CONTINUUM MECHANICS

A Study of Conservation Principles with Applications

 $\mathbf{b}\mathbf{y}$

J. N. Reddy

Department of Mechanical Engineering Texas A&M University College Station, TX 77843-3123

> Under contract to be published by Cambridge University Press

> > July 2009

When even the brightest mind in our world has been trained up from childhood in a superstition of any kind, it will never be possible for that mind, in its maturity, to examine sincerely, dispassionately, and conscientiously any evidence or any circumstance which shall seem to cast a doubt upon the validity of that superstition. Mark Twain

The fact that an opinion has been widely held is no evidence whatever that it is not utterly absurd; indeed in view of the silliness of the majority of mankind, a widespread belief is more likely to be foolish than sensible. Bertrand Russell

Desire for approval and recognition is a healthy motive, but the desire to be acknowledged as better, stronger, or more intelligent than a fellow being or fellow scholar easily leads to an excessively egoistic psychological adjustment, which may become injurious for the individual and for the community.

Albert Einstein

Preface

You cannot teach a man anything, you can only help him find it within himself. Galileo Galilei

This book is a simplified version of the author's book, An Introduction to Continuum Mechanics with Applications, published by Cambridge University Press (New York, 2008), intended for use as an undergraduate text book. As most modern technologies are no longer discipline-specific but involve multidisciplinary approaches, undergraduate engineering students should be educated to think and work in such environments. Therefore, it is necessary to introduce the subject of *principles of mechanics* (i.e., laws of physics applied to science and engineering systems) to undergraduate students so that they have a strong background in the basic principles common to all disciplines and be able to work at the interface of science and engineering disciplines. A first course on principles of mechanics provides an introduction to the basic concepts of stress and strain and conservation principles, and prepares engineer-scientists for advanced courses in traditional as well as emerging fields such as biotechnology, nanotechnology, energy systems, and computational mechanics. Undergraduate students with such background may seek advanced degrees in traditional (e.g., aerospace, civil, electrical, mechanical, physics, applied mathematics) as well as interdisciplinary degrees programs (e.g., bioengineering, engineering physics, nanoscience and engineering, biomolecular engineering, and so on).

There are not many books on principles of mechanics that are written keeping the undergraduate engineering or science students in mind. A vast majority of books on the subject are written for graduate students of engineering and tend to be more mathematical and too advanced to be of use for third year or senior undergraduate students. This book presents the subjects of mechanics of materials, fluid mechanics, and heat transfer in unified form using the conservation principles of mechanics. It is hoped that the book, which is simple and facilitates in presenting the main concepts of the previous three courses under a unified framework.

With a brief discussion of the concept of a continuum in Chapter 1, a review of vectors and tensors is presented in Chapter 2. Since the analytical language of applied sciences and engineering is mathematics, it is necessary for all students of this course to familiarize themselves with the notation and operations of vectors, matrices, and tensors that are used in the mathematical description of physical phenomena. Readers who are familiar with the topics of this chapter may refresh or skip and go to the next chapter. The subject of kinematics, which deals with geometric changes without regard to the forces causing the deformation, is discussed in Chapter 3. Measures of engineering normal and shear strains and definitions of mathematical strains are introduced here. Both simple one-dimensional systems to as well as twodimensional continua are used to illustrate the strain and strain-rate measures introduced. In Chapter 4, the concept of stress vector and stress tensor are introduced. It is here, the readers are presented with entities that require two directions - namely, the plane on which they are measured and the direction in which they act - to specify them. Transformation equations among components of stress tensor referred to two different orthogonal coordinate systems are derived, and principal values and principal planes (i.e., eigenvalue problems associated with the stress tensor) are also discussed.

Chapter 5 is dedicated to the derivation of the governing equations of mechanics using the conservation principles of continuum mechanics (or laws of physics). The principles of conservation of mass, linear momentum, angular momentum, and energy are presented using one-dimensional systems as well as general three-dimensional systems. The derivations are presented in invariant (i.e., independent of a coordinate system) as well as in component form. The equations resulting from these principles are those governing stress and deformation of solid bodies, stress and rate of deformation of fluid elements, and transfer of heat through solid media. Thus, this chapter forms the heart of the course. Constitutive relations that connect the kinematic variables (e.g., density, temperature, deformation) to the kinetic variables (e.g., internal energy, heat flux, and stresses) are discussed in Chapter 6 for elastic materials, viscous fluids, and heat transfer in solids.

Chapter 7 is devoted to the application of the field equations derived in Chapter 5 and constitutive models presented in Chapter 6 to problems of heat conduction in solids, fluid mechanics (inviscid flows as well as viscous incompressible flows), diffusion, and solid mechanics (e.g., bars, beams, and plane elasticity). Simple boundary-value problems are formulated and their solutions are discussed. The material presented in this chapter illustrates how physical problems are analytically formulated with the aid of the equations resulting from the conservation principles.

As stated previously, the present book is an undergraduate version of the author's book An Introduction to Continuum Mechanics (Cambridge University Press, New York, 2008). The presentation herein is limited in scope when compared to the author's graduate level textbook. The major benefit of a course based on this book is to present the governing equations of diverse physical phenomena from a unified point of view, namely, from the conservation principles (or laws of physics) so that students of applied science and engineering see the physical principles as well as the mathematical structure common to diverse fields. Readers interested in advanced topics may consult the author's continuum mechanics book cited above or other titles listed in references therein.

viii preface

The author is pleased to acknowledge the fact that the manuscript was tested with the undergraduate students in the College of Engineering at Texas A&M University as well as in the Engineering Science Programme at the National University of Singapore. The students, in general, have liked the contents and the simplicity with which the concepts are introduced and explained. They also expressed the feeling that the subject is more challenging than most at the undergraduate level but a useful prerequisite to graduate courses in engineering.

The book contains so many mathematical expressions that it is hardly possible not to have typographical and other kinds of errors. The author wishes to thank in advance those who are willing to draw the author's attention to typos and errors, using the e-mail address jn_reddy@yahoo.com.

J. N. Reddy College Station

Contents

Preface	vi
1 INTRODUCTION	1
1.1 Continuum Mechanics	1
1.2 Objective of the Study	7
1.3 Summary	7
2 VECTORS AND TENSORS	11
2.1 Motivation	11
2.2 Definition of a Vector	11
2.3 Vector Algebra	12
2.3.1 Unit Vector	12
2.3.2 Zero Vector	12
2.3.3 Vector Addition	13
2.3.4 Multiplication of a Vector by a Scalar	14
2.3.5 Scalar Product of Vectors	15
2.3.6 Vector Product	16
2.3.7 Triple Products of Vectors	19
2.3.8 Plane Area as a Vector	21
2.3.9 Components of a Vector	22
2.4 Index Notation and Summation Convention	25
2.4.1 Summation Convention	25
2.4.2 Dummy Index	25
2.4.3 Free Index	26
2.4.4 Kronecker Delta and Permutation Symbols	26
2.4.5 Transformation Law for Different Bases	28
2.5 Theory of Matrices	31
2.5.1 Definition	31
2.5.2 Matrix Addition and Multiplication of a Matrix	
by a Scalar	32
2.5.3 Matrix Transpose and Symmetric and Skew Symmetric	
Matrices	33
2.5.4 Matrix Multiplication	33
2.5.5 Inverse and Determinant of a Matrix	35

2.6 Vector Calculus	38
2.6.1 The Del Operator	38
2.6.2 Divergence and Curl of a Vector	40
2.6.3 Cylindrical and Spherical Coordinate Systems	43
2.6.4 Gradient, Divergence and Curl Theorems	44
2.7 Tensors	45
2.7.1 Dyads	45
2.7.2 Nonion Form of a Dyad	46
2.7.3 Transformation of Components of a Dyad	41
2.7.4 Tensor Calculus	40
2.8 Summary	49
Problems	49
3 KINEMATICS OF A CONTINUUM	55
3.1 Deformation and Configuration	55
3.2 Engineering Strains	56
3.2.1 Normal Strain	56
3.2.2 Shear Strain	57
3.3 General Kinematics of a Solid Continuum	60
3.3.1 Configurations of a Continuous Medium	60
3.3.2 Material and Spatial Descriptions	61
3.3.3 Displacement Field	64
3.4 Analysis of Deformation	65
3.4.1 Deformation Gradient Tensor	65
3.4.2 Various Types of Deformations	68
3.4.2.1 Pure dilatation	68 60
3.4.2.2 Simple extension	09 70
3.4.2.3 Simple shear 3.4.2.4 A nonhomogeneous deformation	70
3.4.3 Green Strain Tensor	71
3.4.4 Infinitesimal Strain Tensor	75
3.4.5 Principal Values and Principal Planes of Strains	77
3.5 Rate of Deformation and Vorticity Tensors	79
3.5.1 Velocity Gradient Tensor	79
3.5.2 Rate of Deformation Tensor	79
3.5.3 Vorticity Tensor and Vorticity Vector	80
3.6 Compatibility Equations	82
3.7 Summary	84
Problems	84

 \mathbf{x}

	xi
4 STRESS VECTOR AND STRESS TENSOR	87
4.1 Introduction	91
4.2 Stress Vector, Stress Tensor, and Cauchy's Formula	91
4.3 Transformation of Stress Components and Principal Stresses	100
4.3.1 Transformation of Stress Components	100
4.3.2 Principal Stresses and Principal Planes	102
4.4 Summary	104
Problems	105
5 CONSERVATION OF MASS. MOMENTA AND	
ENERGY	109
5.1 Introduction	109
5.2 Conservation of Mass	110
5.2.1 Preliminary Discussion	110
5.2.2 Conservation of Mass in Spatial Description	110
5.2.3 Conservation of Mass in Material Description	115
5.2.4 Reynolds Transport Theorem	116
5.3 Conservation of Momenta	117
5.3.1 Principle of Conservation of Linear Momentum	117
5.3.2 Principle of Conservation of Angular Momentum	132
5.4 Thermodynamic Principles	133
5.4.1 Introduction	133
5.4.2 Energy Equation for One-Dimensional Flows	134
5.4.3 Energy Equation for a Three-Dimensional Continuum	137
5.5 Summary	139
Problems	140
6 CONSTITUTIVE EQUATIONS	147
6.1 Introduction	147
6.2 Elastic Solids	148
6.2.1 Introduction	148
6.2.2 Generalized Hooke's Law for Orthotropic Materials	148
6.2.3 Generalized Hooke's Law for Isotropic Materials	151
6.3 Constitutive Equations for Fluids	154
6.3.1 Introduction	154
6.3.2 Ideal Fluids	154
6.3.3 Viscous Incompressible Fluids	154
6.4 Heat Transfer	155
6.4.1 General Introduction	155
6.4.2 Fourier's Heat Conduction Law	155
6.4.3 Newton's Law of Cooling	156
6.4.4 Stefan–Boltzmann Law	156
6.5 Summary	157
Problems	157

7 APPLICATIONS IN HEAT TRANSFER, FLUID	
MECHANICS, AND SOLID MECHANICS	159
7.1 Introduction	159
7.2 Heat Transfer	159
7.2.1 Governing Equation	159
7.2.2 Analytical Solutions of One-Dimensional Heat Transfer	162
7.2.2.1 Steady-State Heat Transfer in a Cooling Fin	162
7.2.2.2 Steady-State Heat Transfer in	
a Surface Insulated Rod	164
7.2.3 Axisymmetric Heat Conduction in a Circular Cylinder	165
7.2.4 Two-Dimensional Heat Transfer	166
7.3 Fluid Mechanics	169
7.3.1 Preliminary Comments	169
7.3.2 Summary of Equations	169
7.3.3 Inviscid Fluid Statics	170
7.3.4 Parallel Flow (Navier-Stokes Equations)	172
7.3.4.1 Steady flow of viscous incompressible fluid	
between parallel plates	172
7.3.4.2 Steady flow of viscous incompressible fluid	
through a pipe	173
7.3.5 Diffusion Processes	175
7.4 Solid Mechanics	178
7.4.1 Governing Equations	178
7.4.2 Analysis of Bars	180
7.4.3 Analysis of Beams	184
7.4.3.1 Principle of Superposition	189
7.4.4 Analysis of Plane Elasticity Problems	192
7.4.5.1 Plane strain and plane stress problems	192
7.4.5.2 Plane strain problems	192
7.4.5.3 Fiane stress problems	195
7.4.5.5 Airy stross function	194
7.4.5.5 Any stress function	191
7.5 Summary	200
Problems	200
REFERENCES	211
ANSWERS TO SELECTED PROBLEMS	213
SUBJECT INDEX	225

J. N. Reddy is a Distinguished Professor and the Holder of Oscar S. Wyatt Endowed Chair in the Department of Mechanical Engineering at Texas A&M University (http://www.tamu.edu/acml).

Professor Reddy is a renowned researcher and educator in the broad fields of mechanics, applied mathematics, and computational engineering science. Professor Reddy's research areas include theory and finite element analysis of problems in structural mechanics (composite plates and shells), fluid dynamics, and heat transfer; theoretical modelling of stress and deformation of biological cells and soft tissues; nanocomposites; and development of robust computational technology (including the *K-version finite element models based on the least-squares method* in collaboration with Professor Karan Surana of the University of Kansas). He is the author of over 375 journal papers and 16 books on these subjects. The books published by Dr. Reddy include *Introduction to the Finite Element Method*, 3rd ed., McGraw-Hill, 2006; *Mechanics of Laminated Plates and Shells: Theory and Analysis*, 2nd ed., CRC Press, 2004; An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, 2004; and An Introduction to Continuum Mechanics, Cambridge University Press, 2008.

Dr. Reddy's outstanding research credentials have earned him wide international acclaim in the form of numerous professional awards, citations, fellowship in all major professional societies including AAM, AIAA, ASC, ASCE, ASME, IACM and USACM, membership on two dozen archival journals, and numerous keynote and plenary lecture invitations at international conferences. Dr. Reddy is the Editor-in-Chief of *Applied Mechanics Reviews, Mechanics of Advanced Materials and Structures, International Journal of Computational Methods in Engineering Science and Mechanics*, and *International Journal of Structural Stability and Dynamics.*

The extent of Dr. Reddy's original and sustained contributions to education, research, and professional service is substantial. As a result of his extensive publications of archival journal papers and books on a wide range of topics in applied sciences and engineering, Dr. Reddy is one of the selective few researchers in engineering around world who are recognized by *ISI Highly Cited Researchers* with over 10,000 citations with H-index of over 40. In February 2009 he was awarded a *Honoris Causa* (Honorary Doctorate) by the Technical University of Lisbon.